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Abstract
Device independent I/O has been a holy grail to OS designers since the early days of UNIX. Unfortu-
nately, existing OS’s fall short of this goal for applications that rely on very predictable I/O latency, such 
as multimedia players. Although techniques such as caching and sequential read-ahead can help by 
eliminating I/O latency in some cases, these same mechanisms can increase latency or add substantial 
jitter in others. In this paper we propose a new mechanism for achieving device-independent I/O − adap-
tive prefetching using application-supplied hints of access patterns. Adaptive prefetching actively moni-
tors device performance and dynamically adjusts the amount of prefetching. Our experiments show de-
vice independence can be achieved: a Berkeley MPEG player sees the same latency when reading data 
from local disk or NFS. Moreover, our approach reduces jitter by a factor of 40 over standard tech-
niques.

1) Introduction
Providing a device independent interface to resources has been a central feature of operating systems. 
For example, since the early days of Unix, application developers have enjoyed a simple and consistent, 
I/O independent, programming model provided by the file system abstraction. Programs handle data in 
files using a standard set of operations, such as open, read, write, seek, and close. In turn, the operating 
system translates these operations into device specific actions. The file system abstraction has proven to 
be a powerful tool, making it easy to write programs that store and access data on a wide variety of stor-
age devices. However, current operating systems do not shield applications from variations in storage 
access latency due either to differences in hardware or variations in system load. 

Applications that are sensitive to I/O latency and jitter, such as multimedia presentations are not pro-
vided with device independent I/O by existing operating systems. They must still explicitly consider tim-
ing issues, including disk seek latency and operating system queuing delays. They are either tuned to a 
specific set of device characteristics, thus limiting application portability, or they adapt their I/O behav-
ior at run time at the cost of increased programming complexity. 

In this paper we describe how device timing independent I/O can be provided to multimedia applications 
by combining application information, run-time monitoring and adaptation. We have implemented a 
user-level library which accepts application hints about future file accesses and actively manages the 
buffer cache. Application directed adaptive prefetching succeeds in hiding I/O latency in cases where 
prefetching based on a sequential readahead heuristic fails. Further, we maintain a prefetching window 



and release data outside the window in order to limit the buffer cache flooding by large multimedia data 
streams. 

This paper is organized as follows. Section 2 surveys related work in the areas of I/O prefetching and 
adaptive multimedia applications. Section 3 describes why I/O latency is a concern for multimedia and 
how current operating systems fail to meet the I/O latency requirements of multimedia applications. Sec-
tion 4 presents our design and implementation of application directed adaptive prefetching. Section 5 de-
scribes the results of our experiment modifying the Berkeley MPEG player (mpeg_play) to use applica-
tion directed adaptive prefetching. Section 6 presents our conclusions and provides directions for future 
research. 

2) Related Work
Prefetching 

I/O latency is a well known problem for storage hierarchies. System designers have used two basic tech-
niques to address latency: prefetching and caching. Many researchers have noted that there is a strong 
interaction between prefetching and caching. This is not surprising since both are concerned with man-
aging the same system resource: the file system buffer cache. 

The prevalent operating system approach to buffer cache management has been to apply a sequential 
readahead policy for prefetching decisions [McKusick84,Freitag71] and a least recently used (LRU) 
cache replacement policy. These policies are easy to implement and have been shown to provide good 
performance for many applications.

Unfortunately, for some applications sequential readahead and LRU cache replacement provide poor 
performance. Database researchers pointed out the shortcomings of operating system buffer cache man-
agement policies more than fifteen years ago [Stonebraker81]. There is a body of research on how to im-
prove database buffer cache management by using database and query specific information to select and 
tune buffer cache management policies for better performance [Chou85,Jauhari90]. 

The operating systems research community has also explored using application knowledge to make in-
formed prefetching and caching decisions [Cao95,Patterson95,Kimbrel96,Mowry96]. Notably, 
Patterson’s Transparent Informed Prefetching (TIP) [Patterson95] uses application hints supplied at run 
time to make prefetching and caching decisions with the goal of increasing I/O throughput by exploiting 
the hardware parallelism of disk arrays. In contrast, Mowry reduces the I/O latency for out-of-core sci-
entific applications by using compile-time analysis to insert prefetch and release calls into an application 
to perform explicit cache management [Mowry96]. 

In contrast to previous work in prefetching, our work combines application hints with run time perfor-
mance monitoring and feedback. This mechanism allows our cache management decisions to adapt dy-
namically to storage devices with differing performance characteristics and also to varying workloads on 
a shared system. 

Multimedia storage systems 

Continuous media applications operate on large amounts of data and need to be able to access that data 
at consistent rates. For example, the MPEG-1 standard compresses video sequences into bitstreams that 
require a transfer rate of about 1.5 Mbps. Multimedia storage servers are designed to provide consistent 
rate access to continuous media data. Gemmell presents a survey of architectures and algorithms used to 
design multimedia storage servers [Gemmell95]. In general these servers are dedicated systems and use 



admission control to provide rate guarantees to their clients. The Fellini multimedia storage server pro-
poses to support both continuous media and conventional data accesses [Martin] 

The responsiveness of VCR-like functions, such as fast-forward and rewind, is particularly sensitive to 
I/O latency. Ozden’s design for a Video-on-Demand server presents a scheme for a window of cached 
data around a playback point in order to support these functions [Ozden96]. 

Staehli and Maier [Staehli93,Maier93] have observed that storage systems may exploit multimedia con-
tent specifications to provide constrained latency storage access. In order to meet application require-
ments it is important not only to know what data is wanted, but also when that data is needed. This is es-
pecially true in multimedia where timing can be critical. Data that arrives too late may not be usable, and 
data that arrives too early consumes extra space in the buffer cache. 

Adaptive applications 

Because multimedia applications must run over the Internet where resource availability can vary greatly 
adaptivity is rapidly becoming a standard feature of networked multimedia applications. For example, 
McCanne’s video conferencing tool, vic [McCanne95], uses the RTP multimedia transport protocol to 
monitor and adjust its bandwidth utilization.

The Quasar networked video player uses feedback both to adjust bandwidth utilization and to maintain 
client-server synchronization [Cen95,Koster96]. However, feedback based dynamic adaptation is not a 
simple task. Adapting too slowly means that variations in resource availability are not tracked wells, but 
adapting too quickly may result in overreaction or oscillation. The Quasar player uses the Streaming 
Control Protocol (SCP) and a toolkit of composable feedback modules to provide application-layer 
adaptivity.

Feedback and adaptation have been shown to be highly effective at adjusting application behaviors in 
response to variations in available network resources. We extend this work by applying it to hiding I/O 
latency for accessing data on secondary storage devices.

3) Motivation
This section explains how I/O performance affects multimedia applications. We begin by examining 
how I/O latency can limit the rate at which continuous media data is be presented. Next, we look at the 
techniques used by current operating systems and applications to hide I/O latency and we see how they 
may fail for multimedia applications. Finally, we present our approach to hiding I/O latency and discuss 
how it improves on current techniques.

I/O latency is the problem 

Steadily increasing processor speeds have enabled a new generation of multimedia computing systems. 
These systems can manipulate and present continuous media data, such as digitally recorded audio and 
video, in real-time. This high volume data must often be streamed into memory from local or remote file 
systems on secondary storage devices. Consequently, I/O performance is often the bottleneck for multi-
media applications.

The problem of I/O performance for multimedia applications is caused by the fact that the bandwidth 
and latency characteristics of disk drives have not kept pace with the growth of processor speeds, nor are 
they likely to in the future. RAID devices, redundant arrays of inexpensive disks, provide sufficient 



bandwidth by exploiting I/O parallelism. Even so, real-time constraints will continue to make multime-
dia applications sensitive to I/O latency when accessing stored data.

Typically, a demand-fetch paradigm is used to handle access to file systems on secondary storage: an 
application demands some data and then waits while the operating system fetches it from storage. This 
paradigm is unsuitable for multimedia applications. Consider, for example, a digital video recording 
consisting of a series of frames, averaging 8 KB in size, to be presented at a rate of 30 frames per sec-
ond. (Note that this is low resolution video, 352x240 pixels.) Our example presents an I/O bandwidth 
demand of 240 KB per second, well within the capacity of current systems. In order to present this video 
it is necessary to read an average of one frame every 33 milliseconds. But, disk seek latency and queuing 
delays caused by competing I/O requests can easily result in more than 33 milliseconds of latency. Late 
data degrades the quality of a multimedia presentation by either causing a gap or a delay. One solution is 
to prefetch data before its use. 

Prefetching turns the demand-fetch paradigm around. I/O latency can be hidden by continuously fetch-
ing data into memory before it is read by the application. However, fetching data too soon can also cause 
problems. Just five seconds of our example video will fill over a megabyte of memory, the buffer cache 
can quickly fill with video data which is only read once. The ideal is to have prefetched data streaming 
into the buffer cache so that it is available ’just in time’ for its presentation, and then releasing the data 
from the buffer cache soon after it has been presented. 

Operating system heuristics 

Operating systems are supposed to insulate applications from the details of managing the storage hierar-
chy. For example, prefetching and caching are done by the system, transparently to applications, using 
simple experience-based heuristic predictions of application reference behaviors. Sequential prefetching, 
for example, will prefetch data when a sequential access pattern is detected. These heuristics are easy to 
implement and provide good performance and a simple programming model for many applications.

One problem with relying on heuristic prefetching for multimedia is that it is reactive. Prefetching does 
not begin until after a sequential access pattern is detected. There is inevitably a delay between the time 
when an application starts accessing data (or changes the rate or pattern of access) and when the system 
adjusts to the new behavior. 

Consider a multimedia presentation which concatenates two clips consisting of sequences of video 
frames stored in separate files. Once playback of the first clip has begun, sequential prefetching will 
work to hide the latency of accessing subsequent frames from that clip. But there is no way for the oper-
ating system to predict from the application’s reference behavior that the second clip will also be 
needed. When it is time to play the second clip, the application experiences the full delay of fetching the 
first frame of that clip from storage.

Another problem with relying on operating system prefetching heuristics is that accesses are not neces-
sarily sequential even within a single stream. The bandwidth and processing requirements of playing a 
multimedia stream often tax the capacity of either the I/O system or the CPU or both. To compensate, a 
multimedia application may decide to skip or drop frames. For example, although a video may be en-
coded and stored at a playback rate of 30 frames per second or higher, an application may choose to play 
every other frame in order to reduce the bandwidth requirements. In addition, users may want to fast-
forward or fast-rewind the video for a variety of purposes, including editting and scanning. 

Application work-arounds 



When an application’s behavior does not fit the operating system’s predictive model, developers must 
make a choice: either accept poor performance or try to work-around the operating system. Since poor 
performance does not sell well in a competitive marketplace the choice is simple: work-around the oper-
ating system limitation to get the desired performance. Similar situations have been found by database 
developers, who have been able to exploit their detailed application knowledge to improve I/O perfor-
mance by explicitly managing the buffer cache. Multimedia applications are also in a good position to 
improve the way their data is managed by the storage hierarchy since they can predict their own future 
reference behavior better than the operating system can.

Reconsidering the example of concatenated video clips, the application might read frames some amount 
of time in advance of when they will be displayed. This would allow the latency incurred when begin-
ning a new clip to be overlapped with the playback from memory of the last frames of the preceding 
clip. Some operating systems even provide explicit asynchronous I/O primitives to facilitate this sort of 
programming.

This level of system support allows multimedia applications to address the associated problems of la-
tency, synchronization, and resource allocation on an ad hoc basis. By prefetching explicitly, an applica-
tion can take advantage of its specific knowledge of what data will be needed in the future and when it 
needs to be available. We see three problems, however, with direct application management of prefetch-
ing: device dependence, complex shared resource management and lack of control over resources.

First, application management eliminates the device independence provided by operating system ab-
stractions of resources. Instead applications must manually control the timing of prefetch requests. As a 
result, developers tune current high performance multimedia applications for specific storage devices 
[Aref97].

Second, application management can produce poor resource allocation and scheduling decisions in a 
shared environment. Shared resource management can be done better by a single subsystem rather than a 
collection of applications working independently. Further, without device-specific information, applica-
tions may use excessive amount of memory due to overly aggressive prefetching, or they may suffer 
from poor performance due to under-prefetching and dynamic system behavior. Another possibility is 
that applications may become overly complex trying to track and adapt to current system load.

Third, applications do not have the system level control needed enforce their decisions. For example, an 
application may try to buffer prefetched data in virtual memory expecting them to remain available for 
low-latency access only to have the data paged out by the virtual memory system [McNamee96]. One 
alternative is to allow applications to pin virtual memory pages so they could not be paged out. In this 
case, however, resource sharing is defeated.

Our solution 

Our solution was motivated by the observation that good prefetching decisions depend on two sources of 
information: 1) system resource availability and performance characteristics, and 2) application behavior 
and quality of service requirements. Operating systems have explicit knowledge and control of system 
resources and try to predict how applications will behave. Applications have explicit knowledge and 
control of their own behavior and try to predict how the operating system will behave. Each has only one 
side of the picture and is faced with the difficult task of trying to dynamically predict the other.

We fix this problem by doing application directed adaptive prefetching with the goal of improving I/O 
performance by actively managing the file system buffer cache. We combine application-specific knowl-
edge with operating system resource information to hide I/O latency and jitter from applications. This 



will simplify the task of programming multimedia applications by allowing them to be written without 
having to explicitly consider underlying storage devices.

Our primary goal is to hide I/O latency and jitter for multimedia applications. A secondary goal is to en-
able multimedia applications to become good citizens on shared systems by preventing large streams of 
continuous media data from flushing other data out of the shared buffer cache unnecessarily.

4) Design
This section describes our system architecture for hiding I/O latency and jitter through prefetching. We 
begin by explaining our general approach to the problem, then present the theoretical framework we use 
to make prefetching decisions, and finally we present our software architecture for hiding I/O latency 
through application directed adaptive prefetching.

Application directed adaptive prefetching

Our goal is to hide I/O latency and jitter incurred when reading data from secondary storage. In essence 
we use prefetching to improve file system performance by having data available in the buffer cache in 
memory when requested by the application. Effective prefetching demands good decisions about what 
data to prefetch and when to prefetch it.

Multimedia applications are in a good position to provide information about what data they will need 
and when they will need that data. For example, an MPEG player can provide an index of frames and a 
display rate. This tells us what data to prefetch and allows us to determine a deadline for each frame. We 
can work backwards from these deadlines to determine when to issue prefetch requests.

Prefetching works ahead of an application loading data into the buffer cache. The amount of work ahead 
is called the prefetch depth. In order to completely hide I/O latency, data must be requested sufficiently 
far in advance to insulate the application from system queuing delays and disk latency. The amounts of 
queuing delay and disk latency may vary depending on system hardware and workload. By actively 
monitoring these values in a running system we can dynamically adapt the prefetch depth in order to 
meet application deadlines.

We can establish upper and lower bounds on the prefetch depth. The lower bound on prefetch depth is 
trivially zero in the case where there is no prefetching. The upper bound on prefetch depth is called the 
prefetch horizon, this is the point at which I/O latency is completely hidden and there is no additional 
benefit to prefetching more deeply.

Theoretical framework

Prefetching seeks to hide I/O latency by having data already loaded in the buffer cache when it is re-
quested by an application. If the requested data is not in the buffer cache then the requesting application 
experiences a stall of duration Tstall while it waits for the data to be fetched from secondary storage. De-
mand fetching, in which there is no work-ahead, gives us a worst case for Tstall; in this case Tstall  
equals the sum of the I/O queuing delay, Tqueue, and the disk access latency Tdisk. In general, Tstall  is a 
function of the prefetch depth, that is how far ahead in the data stream we are prefetching. In the case of 
demand-fetching the prefetch depth is zero, thus:

1) Tstall(0) = Tqueue + Tdisk.



In order to estimate Tstall for a particular prefetch depth n, we use the rate of I/O accesses provided by 
the application. The inverse of the rate of I/O accesses is Tperiod. This is the amount of time per frame 
that may be overlapped with the servicing of I/O requests. Now we can generalize equation 1:

2) Tstall(n) = max(Tqueue+Tdisk-(n * Tperiod), 0)

Now we can calculate our prefetch horizon, nhorizon, by solving equation (2) for Tstall(nhorizon) = 0. 
This gives us the prefetch depth at which I/O latency is completely hidden from the application: 

3) nhorizon = (Tqueue + Tdisk) / Tperiod

We can further estimate queuing latency to be the product of the queue size and the disk access latency:

4) Tqueue = Qsize * Tdisk.

We can use these equations with values obtained from run time system monitoring to adaptively adjust 
the prefetch depth for multimedia data streams.

Software architecture

To test application directed adaptive prefetching we implemented it as a user level library. The library 
uses three new system calls. The first two, prefetch() and release() allow the buffer cache to be actively 
managed by requesting that blocks be loaded or unloaded from the cache respectively. The third, moni-
tor(), provides access to information about the performance of the I/O subsystem including average disk 
access latency and current I/O queue size.

Our adaptive prefetcher accepts a index of frames to be read from the application and then proceeds in 
lock-step with the application by intercepting application read calls and using that time to monitor the 
I/O system and make prefetching decisions. Basically, we try to maintain a window of prefetched frames 
around the application’s current location in the data file. The size of window is varied adaptively based 
on the disk access latency and I/O queue size monitored in the system. Prefetches are issued to bring 
frames ahead of the application into memory and releases are used to release frames after they pass out 
of the prefetch window. 

4) Experimental Results
In this section we examine the performance of an MPEG-1 video playback application with and without 
application directed adaptive prefetching. Since we are interested in cases where sequential readahead 
fails to hide I/O latency we looked at what happens when a multimedia stream is accessed in a striding 
pattern, for example when fast forwarding or when skipping frames to adapt to CPU or I/O bandwidth 
limitations.

MPEG-1 uses a combination of inter- and intra-frame coding in order to balance between the needs of 
compression and random access within a video sequence. Interframe encoding allows a number of tech-
niques to achieve high compression be encoding only the differences between frames. As a result, inter-
frame encoded frames depend on other frames in order to be decoded. In contrast, intraframe encoded 
frames are self-contained and provide convenient random access points within an MPEG bitstream. 
Within a bitstream frames are arranged in ’groups of pictures’ consisting of one intraframe encoded I-
frame and zero or more interframe encoded P and B frames that depend on the I-frame and, possibly, 
each other. In our experiment we read and display only the I-frame from each group of pictures. As we 
have noted, this is a reasonable scenario and it produces a striding read pattern where sequential reada-
head does not work.



Next we describe the hardware and software used in our experiments. Then we describe our experiments 
and the metrics that were used. Finally, we present and discuss our results.

Equipment 

We used the Berkeley MPEG video software decoder [Rowe93] (mpeg_play) version 2.2 to decode and 
display MPEG-1 video bitstreams in all of our experiments. We instrumented the mpeg_play application 
to measure CPU times using getrusage and an idle cycle counter read immediately before and after de-
coding and displaying the sequence of I-frames.

Our continuous media data file was an MPEG-1 bitstream recorded with an Hitachi MPEG camera 
(model MP-EG1A KIT ISA). The bitstream contained 128 groups of pictures each containing the fol-
lowing sequence of frame types: IBBPBBPBBPBBPBB. The 128 I-frames averaged 13710 bytes in size. 
Average sizes for P and B frames were 8495 and 5636 bytes, respectively. Thus our striding read pattern 
skipped 90340 bytes between each read. We used a separate index file that was created by parsing the 
bitstream before running our experiments. The size of the entire bitstream was 13.33 megabytes, with 
1.76 megabytes, or 13%, containing I-frame data.

All of our experiments were run on 200 MHz Intel Pentium computers running the Linux 2.0.29 operat-
ing system. Our experiment required several modifications to Linux. Prefetch and release system calls 
were added to allow user-level cache management. Timestamps were added to I/O requests so that disk 
access latency could be monitored and made available to the adaptive prefetcher. And finally, we added 
an idle cycle counter as a way to measure I/O latency. We ran our tests on otherwise quiescent systems 
running only necessary background processes (X and nfsd). Under these conditions we interpret the 
measured idle time as roughly corresponding the amount of I/O stall time experience by the tested ap-
plication.

Our local file system tests used Linux’s ext2 file system and accessed data on a Quantum Fireball IDE 
hard drive. Using the Linux utility hdparm we measured buffered disk reads to take 5.7 MB/sec; reads of 
data already in the buffer cache were timed at 36 MB/sec. Our remote file system tests used an NFS file 
system also running on a 200 MHz Pentium Linux system. The client and server were connected using a 
dedicated 10Mbps ethernet. 

Experiments 

Our experiments consisted of using mpeg_play to display all the I-frames in an MPEG-1 bitstream. We 
tested three versions of mpeg_play. The first, mpeg_play, is the version from the Berkeley distribution. 
The second, indexed mpeg_play, is the version modified to use an index file that is read into memory 
before any measurements are made. And the third, prefetching mpeg_play, also uses an index file and is 
linked with a library that uses prefetch and release calls to do adaptive buffer cache management. Each 
of our versions of mpeg_play was tested on both local and remote file systems.

Results 

Figure 1 shows the performance improvements achieved through using a index to read MPEG frames 
rather than reading and parsing the full bitstream. For each case we show a bar representing the average 
times observed over eighty runs. In each bar the top section is the amount of time the processor was idle, 
this corresponds to I/O stall time. The middle section of each bar is the time spent running in system 
mode - this includes time spent on copying data within the kernel. The bottom sections are the time 
spent in user mode decoding and displaying the MPEG video.
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We can see in Figure 1 that there is a dramatic performance leap between the original mpeg_play and 
the indexed version that reads frames based on an index. This result reflects the fact that the indexed 
version only reads 13% of the file, striding over the rest, whereas mpeg_play reads the entire file. It is 
interesting to note that in the indexed version experiences I/O stalls because its striding reads do not trig-
ger Linux’s sequential readahead. The mpeg_play version also experiences I/O stalls, but in this case the 
file is being read sequentially and Linux is doing readahead. These stalls occur because mpeg_play out-
runs Linux’s readahead because it drops 87% of the data it reads without further processing. We thought 
this might be caused by mpeg_play’s use of mmap, via the gcc libc implementation of fread, to access 
file data. Linux only does single page readahead for mmap. In contrast, Linux will readahead up to 36 
pages in files accessed using read. We tried replacing mpeg_play’s freads with reads and found that 
there was no change in performance even with the more aggressive readahead policy.

There is also a significant improvement in performance between the indexed and the prefetching ver-
sions of mpeg_play. Figure 2 shows this comparison, here both versions are handling the same number 
of bytes, but the indexed version spends more time stalled waiting for I/O because Linux’s sequential 
readahead fails to recognize its striding pattern of reads. In the local disk case there was a 10% perfor-
mance improvement for the prefetching application. In the NFS case, where I/O stall times were greater 
due to the higher latency of accessing the network server, the prefetching application showed a 20% per-
formance improvement.
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We still observed some idle time with adaptive prefetching because our prefetches are not completely 
asynchronous. On local file systems they stall while accessing file system metadata, inode block maps, 
and on remote file systems there are stalls in the network drivers. These delays can be reduced in the fu-
ture by prefetching the metadata and by moving the prefetching activity from a user library to a seperate 
process.

Next we compare the read latencies observed by the indexed and the prefetching applications on single 
runs. Figure 3 and 4 show this comparison for reading data from a local hard drive and from a remote  
server. These runs are representative of the eighty runs we recorded. We have chosen to present single 
runs to give a sense of the variation in latencies that occur. In both the local and the remote cases, the 
read latencies for prefetching version averaged 0.3 milliseconds, this reflects the system call and data 
copying overhead. In contrast, the latencies for the indexed, non-prefetching, version reflect I/O stall 
times which are hidden by adaptively prefetching. For  the local case, without prefetching, latencies av-
eraged 14.7 milliseconds with a maximum of 187 milliseconds. For  the corresponding remote case la-
tencies averaged 31 milliseconds with a maximum of 53 milliseconds.
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In Figure 5 we show how we use  a prefetching window to minimize the footprint of multimedia streams 
in the buffer cache. The strategy is simple and very successful: we leave frames in the cache after they 
have been read by the application for the same amount of time as we are prefetching in advance of the 
application. After this time the frames are explicitly release so that the buffers they occupy become 
available for reuse. By maintaining a window we ensure that should the application reverse directions, as 
may happen for example in the case of video editting, it is possible to proceed in the opposite direction 
without stalling to wait for I/O.



5) Conclusions
In this paper we have demonstrated that it is possible to use adaptive prefetching to provide device inde-
pendent file I/O. We can hide I/O latency and jitter from multimedia applications by using a combina-
tion of application information, runtime monitoring and adaptation. Our application directed adaptive 
prefetching works even in cases sequential readahead prefetching fails. In addition, we have shown that 
it is possible for multimedia applications to be good citizens and achieve good performance without 
flooding the buffer cache with continuous media data.

As CPU speeds continue to increase relative to secondary storage access latencies it will become in-
creasingly important to prefetch data. By prefetching filesystem metadata as well as file data and by 
moving our prefetching operations from a user library to a seperate process we expect to be able to fully 
hide storage access latencies from applications.

The work described in this paper is an encouraging first step. We are currently extending our research in 
several directions. The prefetch, release, and monitor system calls give us a workable low-level interface 
on top of which we may construct adaptive prefetchers. The next step is to improve the application pro-
gramming interface. We are also investigating how our system can implement and use admission control 
and I/O bandwidth reservations.
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