
Oregon Health & Science University
OHSU Digital Commons

CSETech

September 1983

Marigold - a functional, flow-graph language
Richard B. Kieburtz

Follow this and additional works at: http://digitalcommons.ohsu.edu/csetech

This Article is brought to you for free and open access by OHSU Digital Commons. It has been accepted for inclusion in CSETech by an authorized
administrator of OHSU Digital Commons. For more information, please contact champieu@ohsu.edu.

Recommended Citation
Kieburtz, Richard B., "Marigold - a functional, flow-graph language" (1983). CSETech. 128.
http://digitalcommons.ohsu.edu/csetech/128

MAR I GOLD
A FUNCTIONAL, FLOW-GRAPH LANGUAGE

OGC TR CS/E 83-005

Oregon Graduate Center (503) 645-1121
Dept. of Computer Science & Engineering
19600 N.W. Walker Road Beaverton, OR 97006

*Revised September, 1983.

Marigold - A functional, flow-graph language

Oregon Graduate Center
19600 NW Walker Road
Beaverton, OR 97006

Abstract1
Marigold is a new functional programming language that

exploits the style of flow-graph specification. I t has the power of a
universal language, yet all programs appear as finite, reducible
flow-graphs, without the use of recursion. Several examples of pro-
grams are given in the paper, and are contrasted with programs
given in other styles.

The fundamental data type of Marigold is the stream. Stream
objects are (in general) of unbounded extent, and arbitrarily hgh-
order streams may occur. An evaluator must perform lazy evalua-
tion of stream construction in order to obtain terminating cornpu-
tations.

A formal semantics, based upon the theory of partially-additive
monoids, is outlined in the paper.

Key words and phrases: progremming languages, functional programming, lazy evaluation, flow-
graphs, formal semantics.

research reported here was supported by the OCC CS/E consortium with funding from
Floating Point Systems and Tektronix.

1. Functions specified by flow-graphs
The idea of specifying programs by flow-graphs seems to be as

old as computing. It is particularly attractive in a setting in which
programs are intended to specify functions (i.e. there is no impli-
cit, global state). No artificial distinction needs to be made
between control and data flow - the arcs of a flow-graph simply
denote the flow of information from one operator to the next.
Therefore it is surprising that there remain aspects of program-
ming with flow-graphs that have not been fully explored -- in fact,
have hardly been touched upon! -

This is not to say that there have not been substantial and
noteworthy contributions to the development of flow-graph
languages. FGL [KelBO] is a full-blown functional flow-graph
language that has been formally defined, implemented by an inter-
preter, and evaluated by its use in many examples. But the seman-
tics of FGL is based upon its translation into the A-calculus. It can
achieve full expressiveness without the use of recursive definitions,
but only by resort to higher-order functions and to the device of
self-applied functions. While interesting from a theoretical point of
view, we do not regard these devices as natural to use in a pro-
gramming notation. Most programmers of flow-graph languages
such as FGL make use of recursive definitions.

When recursive definitions are specified, the notation regresses
to naming. A name is bound to a flow-graph, and the name is used
to represent the graph in a recursive application. If the graph
were to be fully instantiated by substituting for each name the
graph it represents, then the occurrence of a recursive invocation
would result in an infinite graph! The problem is illustrated by a
familiar example. An infinite list of ascending integers generated
from a single integer argument can be obtained by applying the
recursively-defined function (given here in LISP notation)

(def integers (lambda (n)
(cons n (integers (succ n)))))

Writing this definition as a flow-graph gives

integers :

in which the name of the graph, integers, occurs on one of its
nodes. Fully instantiating the graph leads to

1

integers:

,

in which the diagram represents an infinite graph.
A solution to this problem is hinted at by Peter Henderson

[Hen80]. He draws a finite graph by applying succ not to the argu-
ment n of i n t e g e r s , but to the entire list itself. Of course, wcc is
not quite the right function to apply to a list; it should be
m a p c a r 'succ ' . This gives the LISP definition

(def i n t e g e r s (l a m b d a (n)
(c o n s n (m a p c a r 'succ ' (i n t e g e r s T I)))))

and leads to a finite flow-graph,

where the symbol '@I, read "apply-to-all", is equivalent to the LISP
functional m a p c a r . The symbol 43 is the stream constructor, analo-
gous to the list constructor cons of lisp. The stream constructor
was introduced in FGL and named fby, which is pronounced as "fol-
lowed by".

The list defined by applying i n t e g e r s to any finite integer argu-
ment is, of course, infinite. Such function definitions can only lead
to terminating computations if list (or stream) construction is
defined as a non-strict function, allowing lazy evaluation [HeM76,
FrW761.

If the LISP definition is rewritten as a recursion equation,
i n t e g e r s n = (cons n (m a p c a r 'SLLCC' (i n t e g e r s n)))

the form of this equation may strike the reader as unusual. We
have become accustomed to writing recursion equations so that
any applicative expression occurring in the right-hand side, even
one that represents a recursive invocation, will be defined in a
poset ordering before the applicative expression on the equation's

left side. In the equation above, the recursive invocation on the
right is precisely the same applicative expression that appears on
the left side. However, few readers would doubt for long that the
above equation is well-founded.

The possibility of definitions such as the one above, with the
attendant consequence of a finite flow-graph representation,
motivates the question "are finite flow-graph representations
sufficient to define all computable functions?" The flow-graph
language Marigold is presented to lay this question to rest. As we
shall see, it leads to a programming style that is in some cases
quite different from those to which we have become accustomed.
The style emphasizes iteration, not recursion. The paradigm used
for recursive function definition is derived from primitive recursion
schemes and the Kleene p operator.

1.1. Flow-graph operatars
The operators of a flow-graph language are the several kinds of

nodes that it defines. There are just four kinds of operators in
Marigold:
i) Function nodes:

represents a function f : A + B.
Given functions f : A + B , and g : B + C, a pair of function
nodes connected by an arc,

represents the composition of functions J 09 : A + C (function
composition is written here in diagrammatic order).
Multiple arcs originating or terminating on a common node
represent multiple values, or equivalently, represent a value of
a cartesian product type. Selection of components of a value
of product type is implied by the routing of individual arcs.
When there are multiple arcs incident upon a node, they may
be annotated with integers to avoid ambiguity among the com-
ponents of a product type. For example, a function of two
arguments which also produces a result having two components
of its value,

,f : A x B + C X D
could be represented by

ii) Value-sharing nodes:

represents a common value appearing on multiple data-flow
arcs.

iii) Recursive selec tion2:

represents a data-activated fitter that is controlled by a stream
of Boolean values at its control input. It transmits an element
of its type A -stream input arc onto its output arc only when
the element a t the head of its control input stream is the
Boolean value T. Recursive selection is used to form a graphi-
cal equivalent of Kleene's recursion operator, /I@) ,

This graph represents a function that filters its input stream,
admitting into its output stream only those elements which
satisfy the control predicate p. A s we shall see later, this
scheme can be used to form a conditional selection

"Recursive selection is the only Marigold operator that does not have an exact counterpart in
E L . It can be simulated in FGL by e while loop.

4

(if. . .then. . . else. . .) scheme.
iv) Stream construction:

1.2. Streams are fundamental data types
In flow-graph notation, streams are the foundation for data

types. An arc connecting two nodes of a flow-graph represents
data, and can be labelled with the type of that data. Arcs may
represent individual items, streams of items, streams of streams of
items, etc. Thus the fundamental data types are n-order streams.
The type of an individual item (such as a single Boolean value) is
considered to be a 0-order stream.

Accordingly, Marigold has several polyrnorphically-typed opera-
tors on streams. In addition to stream construction, given above,
these are:

Next element selection:

Rest of stream selection:

Appl y-to-all:
f : A + B

Boolean values are also representable in terms of streams. The
null stream, denoted by <>, is the canonical representation for the
Boolean value T. The Boolean value F has no canonical representa-
tion; any non-null stream is a representation for F. I t is con-
venient to designate explicitly those streams used as Boolean
values, so we define the predicate that tests for a null stream,

although it is equivalent to an identity function, or a vacant arc of
a flow-graph

___3

1.2.1. The expressive power of streams
There are several more or less obvious aspects of streams that

must be kept in mind when a reader is interpreting Marigold pro-
gram schemes. The value of a stream is an r.e. set; sometimes
these sets are finite. Pairing an r.e. set with its index set gives the
graph of a function; thus streams can be considered to represent
partial recursive functions. A stream of streams can be considered
to represent a function of (at least) two arguments, in curried
form. For instance, if S is a second-order stream, we can say that
it represents a function of two arguments, J s . Selection of an ele-
ment of S by index x yields a secondary stream, S,, which
represents f z, a function of a single argument. Further selec-
tion from S, by index y yields an element Szny which is the value
produced by the (double) application f z y .

These observations have importance because Marigold is a
language in which the only second-order functions are the opera-
tors defined above. The language does not provide functional
abstraction, and functions are not first-class objects in Marigold.
In a language based upon the A-calculus this would severely restrict
its expressive power. But Marigold programmers have streams to
use in place of hlgher-order functions. When using streams, one
tends to think in terms of r.e. sets and transformations upon sets,
rather than of transformations upon functions, and to some pro-
grammers at least, this mode of thought seems more natural.

1.3. Well-formed flow-graphs
Not every graph that can be formed by interconnection of a set

of nodes with directed arcs is to be considered a well-formed Aow-
graph. In fact, we impose a strong constraint upon the topology of
a directed graph that will be given meaning as a program; namely
that it must be reducible. There are six reduction rules that may
be applied to test a graph for reducibility. In rules (a-b), the nodes
may be of any of the four kinds listed above, subject only to the
constraint that incident arcs have their heads and tails drawn con-
sistently with the definition of each kind of node.

This rule is a special case of (a) + (b).
d)

This rule applies only to a stream construction node.
e>

This rule applies only to value-sharing nodes.

This rule applies only to stream-construction nodes.
A graph is said to be reducible if it can be reduced to a single arc
by repeated application of rules (a-f). Reducible flow-graphs have
been studied by Ullman and Hecht, and an alternate characteriza-
tion is given in [Hec??].

A flow-graph specification is well-formed if it is both reducible
and well-typed. Both of these properties can be checked by static
analysis of a flow-graph.

2. Programming in Marigold
To illustrate program construction with Marigold, let us first

specify the elementary arithmetic functions, then give several
more interesting examples. Our goal is to illustrate the power of
the Marigold operators; thus we shall be very sparing in the use of
primitive functions. We do, however, require a basis for the domain
of objects that are represented on the arcs of graphs. A minimum
basis is the null stream object.

2.1. Getting started
Marigold programs define functions which map n"-order

streams to mth-order streams. In making such definitions it is
often necessary to specify an initial value. Recall, however, that a
flow-graph must be reducible to a single arc in order to constitute
a well-formed Marigold graph. The reducibility requirement prohi-
bits the appearance of values as nodes of a program Aow-graph; we
must instead use constant-valued functions, as is done in FP
[Bac78]. Thus to use the Boolean value T explicitly in a program
definition, we make a constant ,function,

constant T

The generator for streams is the null stream. Often it is neces-
sary to describe as well a singleton stream that contains one
object. A stream containing the single object u is denoted by

2.2. A convenient macro definition
Some programs use conditional selection among two (or more)

alternative functions to apply to an input stream. Such a selection
can be programmed, using the p-operator, but the resulting graph
is more complex to read than seems warranted. Therefore, in
order to make the selection operation manifest, we shall define the
following as equivalent graphs. The left side, which might be called

an if-then-lse construction in a textual language, is not a new
primitive of Marigold. Rather, the definition should be thought of
as a macro-operator.

- - -

Many functions take multiple arguments which in Marigold, as
in FP, are represented as single arguments of a cartesian product
type. In a Marigold flow-graph, this is manifested by multiple arcs
incident upon a function node. Jn order to express selection among
the incident arcs, we shall use numbers as labels when convenient,
and shall also introduce selector names (a la FP) as polymorphic
functions defined by graph schemes such as:

2.3. Generators for the natural numbers
To generate a representation for the natural numbers, there

must be a zero element, for which we use the null stream object of
Marigold,

zero : <>
and a successor function, - SUCC

Nonzero numbers are generated by application of succ to preced-
ing numbers, and are represented by finite sequences of the null
stream:

0 : <> 1 : <<>> 2 : <<>,<>> 3 : <<>,<>,<>> ...

2.4. A n equality predicate
Our first Marigold program will define an equality predicate on

natural numbers. Since the only primitive, Boolean-valued func-
tion so far defined as a Marigold operator is the test for a null
sequence, the equality test must be constructed to make use of
null? .

The program given below is a composition of three parts. The
first segment takes the original argument, a pair of streams
representing numbers, into a stream of such pairs. The members
of each pair are the tails of the respective stream elements of the
preceding pair. The second graph component represents a p-
operator that tests each element of this sequence of pairs, to
determine whether one or the other is the null stream (the number
zero), and delivers the stream of pairs that meet this test. The
third component conx7erts this stream of pairs into a stream of
Boolean values, T if both elements of a pair are null, F otherwise.
Finally, an application of the element selector hd extracts from the
stream of BooIean values the first one.

eq?

stream

where t l Z is

and the two comparison predicates are:

ull-Znd "F'

2.5. Predecessor
A predecessor is a number whose successor is equal to the

given argument. In order to form a predecessor from the basis
with whch we have started, we first construct a sequence of

numbers, starting from zero, then compare the successor of each
one with the argument. In order that the argument can be
presented to a sequence of comparisons, it must be copied into the
elements of a stream. The first segment of the program generates
an infinite sequence of pairs, whose first elements are numbers
ascending from zero, and whose second elements are copies of the
given argument.

The first program segment is composed with a second, which
selects from the infinite stream just those pairs for which the suc-
cessor of the first element is equal to the second, if any such pairs
exist. Finally, by selecting the initial pair from the selected
sequence, and taking its first element, we obtain a number that is
the predecessor of the original argument, if any such number
exists.

int stream stream stream

++./-pmd -
int

In this example, it is not difficult to prove (from a suitable axiomat-
ization of streams) that the program will yield a result when
applied to any stream object except the null stream.

The example as given above does not rely upon the particular
representation for numbers chosen in Sec 2.3. It uses only the
constant 1 and the functions succ and eq? . Of course. a simpler
realizations of pred is possible by taking account of the representa-
tions of numbers as streams. It is just

Continuing the development of the elementary aritkmetic func-
tions, the next is add. Ths follows nearly the identical scheme as
does pred; the differences are that it takes a pair of arguments
instead of a single argument and the constant zero , and that the
functions i n c r l S t and i s p r e d ? are replaced by the functions
i n c r d e c r and eqO pd defined below.

The predicate e q P is of course the same as null? when integers
are represented as streams of (null) streams. Multiplication and
exponentiation functions follow similar graplvcal schemes.

Functions defined in Marigold extend naturally to stream-
valued arguments. The apply-to-all functional is the canonical
extension operator. Other schemes can be programmed, however.
For instance, a useful scheme is that which uses a binary operator
and maps a stream into a scalar value.

2.6. A reduce operator
The progi-~rn scheme used to define p rc l can also defii:r a

reduce operator. Let

be a binary function and let u : A be a c ~ n s i m t . Then tiit. progr.dl!l

reduces an argument of type A'-stream to a value of type A by
iterated application of f , using u as a-left unit. 'Ths reduce opera-
tor generalizes that of APL. Its unit is made an explicit, rather
than an implicit argument, and the function f is not required to be
associative.

Elementary arithmetic functions provide useful examples to
illustrate the style of Marigold programs, but it is not surprising
that. they can be givrn in a s t raightfo~~iard manner using flou-
grapll.: Functions that arc known to adrnit it cratirc cv;luutior:

(without use of a stack) have often been used to illustrate function
definition by flow-graphs, without the use of recursion. However,
the next example is a function that has no tail-recursive definition.

2.7. Reverse
The function which reverses a (finite) stream is not so simple to

define in Marigold as it is in LISP, for instance. The fundamental
data type, the stream, has operators that make it natural to use as
a FIFO data structure, rather than as a LIFO data structure. With a
LIFO data structure, the reverse of a list is obtained just by rewrit-
ing it, one item at a time. A tail-recursive, equational definition of
reverse can be defined in just this way,

reverse x = (rev nil x)

where

rev u v = (cond ((nu11 v) u)
(t (rev (cons (car v) u) (cdr v))))

The above construction is possible because c a r is a function that
returns the last item "consed" onto a list. With streams, the
extractor function hd returns instead the first item that was
entered in the stream. In the following Marigold program for
reverse, higher-order streams &re generated, in order to permit
the components of an original stream argument to be extracted in
reverse order. The program is a composition of three component
functions:

The first component function,

expands a stream of length I? into a second-order stream whch
orders the terminal substreams of the argument. The second func-
tion,

stream

', id-t l

pairs copies of the stream produced by tls with successive terminal
subsequences of itself. Each such subsequence represents a des-
cending sequence of natural numbers, n , n-1, ... 0, where 0 s n < 1 .
The last function,

uses the number-sequence in the second component of its argu-
ment pair to control the selection of a component item-stream
from its first argument. Taking the heads of the selected item-
streams yields the reverse of the item-stream that was pre.. cented
as the argument to rcverse. The function trans2 is the transpcse
of a stream-pair; it maps a pair of streams into the single stream
whose elements are the pdrs of elements of corresponding index
from the argument streanls.

2.8. Transpose
A finite vector is just a stream of finite extent. A matrix is a

finite stream of finite streams, each of the same length. The func-
tion transpose, given below, transposes a matrix. its scheme is yet
another instance of the scheme we first introduced to define prerl.

However, the iterated function, moveheads , applies the stream
selector functions hcl and t l not to the whole argument, but to ele-
ments of a second-order stream argument.

In this example, second-order streams occur as the input data. A
third-order stream is created as an intermediate data representa-
tion in the iterative cycle. In the following example, higher order
streams are created in lieu of higher order functions.

2.9. Prime numbers
The style of programming that we have been illustrating is

well-suited to the construction of a sieve for filtering the primes
from a sequence of natural numbers. The algorithm prezented
here is that published in [He11761 and attributed to P. Quarendon. A
stream of natural number-s is generated fro111 a seed value ~vhic21 is
the first prime. A second-order stl-eznl is then genel-ated bj- filter-

at are ing from each preceding stream of numbers all those th-
divisible by the first e l e rn~n t of that strean? This is the t a sk of the
stream-to-stream functiol~ r e l p ' i i ; ~ ~ ~ . Finally, the sequence cl' t l ~ c
initial elen-1ent.s of each st:-e&iTi ~r;ll be the streun-1 of p r i i ~ ~
numbers.

The filter that removes relative primes from a stream first pairs
the head of the original stream with each of its succeeding ele-
ments. This stream of pairs is then examined to determine which
of the pairs are multiples, and these pairs are removed. Finally,
the first element is stripped from each pair, leaving a stream of
numbers that were not divisible by the head of the original stream.

stream

The find component performs the tes t of a pair of integers to
determine whether or not the second is a multiple of the first. A
copy is made of the first value, then a stream of triples is formed,
in which every multiple of the original first value occurs. From this
stream of triples is selected the first one in which the synthesized
multiple equals or exceeds the value of the second number in the
original pair. The final result of the test is gotten by an equality
test comparing the synthesized multiple with the hypothesized
multiple.

not -div ides

1
2 ~ n t - p r - s t r e a m

pair

neztmult

2.10. Yrin-~iiive recurs io:~
The progl-anls T!-e have seen fc1!o3,- thp c7?>.r cche ' l~es cf E ' : ' c , I % ~ ~

construction and se l~c t ion over and over agliilL. Tliese scl-,tlili~:,
also seem to illustrate a very natural programrrling paradigm. It is
not original with Marigold. The paradigm of stream construction is
directly analogous to primitive recursion as a scheme for function
definition.

The primitive recursion scheme to define a function f is

where g and h are previously defined functions, and y is an argu-
ment tuple (one or more arguments). This scheme translates into
Marigold as:

As mentioned previously, the Marigold scheme

corresponds to Kleene's p operator. The operator, in combina-
tion with primitive recursion schemes and a suitable set of basis
functions, comprises a mathematical language in which all partial
recursive functions can be defined.. Marigold also has this universal
expressiveness.

2.1 1. Indexed se lzc t ic~
An importa.nt operation is selection of an elemerlt from a

stream, according to the value of a nztural number used as an
index. The follo~ving progrLrr! pel-101-12s indexed selecticil:

i n d e x e d s e l e c t i o n

In this example, if the first component of the argument is bound to
a stream value S which is interpreted as the graph of a function,
fs : A + B, and the second component is bound to an integer
encoding n of a type A object, then the program represents the
application fs n. In the next example we shall make use of this
interpretation.

2.12. Ackermann exponential
Next, we have the classical example of a total function which is

not primitive recursive. The recursion scheme by which ths func-
tion of three variables is customarily defined starts by giving as a
primary basis the cases when the first variable is zero,

A secondary basis specifies the function for all values of its first
argument, when the second argument is held at zero,

A(l,O,y) = 0
A(z+2,0,y) = 1

The definition is completed by the dyadic recursion equation

As a function of three variables, the Ackermann exponential could
be represented by a stream of streams of streams of integers; for
economy of notation, we represent it below as a stream of streams
of integer-valued expressions in the variable y ,

A Marigold program that generates the Ackermann exponential of
three variables is presented below, in a herarchical definition. At
the first level, the two components of the input are the index and
the value of the first stream (first column in the table above) of the
representation of the Ackermann exponential. The remaining
streams are generated by iterative application of the function
neztz.

/ w (s t ream XlnL)-stream u s t r c a m

The next level of program composition presents a definition of
nez t z whose inputs are components of the stream generated by
the primitive recursion cycle in the program shown above. The
computation of next2 uses the zth stream and the value of the ini-
tial element of the z + lst stream to generate the remaining ele-
ments of the z + lSt stream.

next , z

(stream Xinl)-rtrearn

The innermost level of program composition defines the func-
tion neztz, which generates the r + lst value in the z + 1" stream.
I t does so by using the value of A(z+ l , z ,y) as an index into the
stream representing < . . - A(z, e, y) . - . > Note that selecting
from a stream, S, the value indexed by an argument, z is the same
operation as application of the function fs to a value z.

In [NorBl], the analogous phase of the construction is done by
recourse to a second-order function, which carries out the applica-
tion described above.

2.13. Merge
Two streams of objects from a totally ordered domain are to be

merged into a single stream such that jf the argument streams
were presented in order, then the result stream will also be in
order. Repetition of objects is allowed. This example is of interest
because the customary way to specify it using recursion equations
makes two recursive calls, with differing arguments:

merge z y =
(cond ((nu11 z) y)

((null Y) 4

((less (c u r z) (c a r y)) (cons (c m z) (m e r g e (c d r z) y)

(t (c o r n (c m Y (m e r g e + (c d r Y 1))))
The two alternatives for the as-yet-unrnerged remainders of the
argument streams can be handled with a conditional selection
form.

Let Mselect be the flow-graph

streamX
item

in m e r g e : - merge

!
Stream (stream Xsa.ream)-stream

where c o m p a r e s is

(T - a r e s

rtreamX stream
null 1

null 2 nd k-9
This flow-graph program appears somewhat more complicated than
the examples that have preceded it, but it is not more complicated
than is the recursion equation defhition of m e r g e . The algorithm
requires case analysis on the component input streams because
they may be finite, and the case analysis is reflected in the com-
pound comparison predicate.

3. Semantics
Marigold program schemes are given meanings as operators in

the partially-additive category PfnD [ArMBO]. This is a direct
semantics which assures the existence of fixpoints for flow-graphs
restricted as are those of Marigold. Marigold schemes are graphi-
cal representations of Kleene recursion schemes, rather than being
based upon the A-calculus, as is FGL. Thus it is not necessary to
use as complex a semantic definition as is required for the h-
calculus. In particular, reflexive domains are not required.

Unlike a language inspired by the A-calculus, Marigold does not
allow the definition of higher-order functions. I t does not employ
abstraction and thus has no variables - in this respect it is more
like FP than like ISP. It is possible to define program schemes in
Marigold, and to substitute instances of other Marigold functions
into these schemes. But it is not possible to substitute functions
into schemes recursively. Avoiding the recursive definition of
higher-order functions achieves a profound simplification with
respect to the A-calculus.

In place of higher-order functions, first-order functions are
applied to produce or extract from higher-order streams in Mari-
gold. As we have seen in numerous examples (r e v e r s e , p r i m e s ,
ackemann, merge , etc.) higher-order streams are often defined
specifically to create suspensions which will never be more than
partially evaluated. Extraction of components from these
suspended streams must necessarily occur in a different order
than would be dictated by an applicative-order e~aluat~ion. It is
perhaps in recognizing the power of suspended s i r e m s that Mari-
gold achieves its novelty as a programming notztion -- the pro-
grammer is not required to resort to naming and environment
definition in order to achieve expressiveness.

3.1. Reflexive domains considered harmful
It is interesting to contemplate just why a semantics for the A-

calculus requires reflexive domains. In the A-calculus every
expression can be used as a function; in computing jargon we would
say that there is no distinction between program and data. Since a
function can be applied to itself, any domain that is to provide a
model for the A-calculus must be large enough to include its own
function space. This is interesting, and to define such a domain is a
technical t o u r ale f o r c e . However in doing so, one builds a rather
complex and opaque foundation for programming language seman-
tics. Is this really necessary?

Consider an alternative. In Marigold, we have a programming
notation in which programs are expressed by graphs and data are
represented by streams of arbitrary order. The language has

universal power, but programs and data are separate. What then
has happened to the "self-applied" function?

What has happened is that the mechanism for interpreting
expressions as functions (intensional representation) is not implicit
in Marigold, as it is in the A-calculus. If you want intensional
representation, then it is up to you as a programmer to invent an
arithmetization for flow-graphs, and to construct a stream-of-
streams that represents, for each natural number n, the graph of
the function defined by flow-graph p,. Note the distinction: Mari-
gold graphs are expressive in that a program to define any func-
tion, including a Marigold interpreter, can be given. But a connec-
tion between intensions (flow-graphs) and data (streams manifest-
ing the graphs of functions) is not implicit in the programming
language.

As a final comment, we should make clear that the cardinality
of a domain required for a model of functions definable in Marigold
is not smaller than that required for a model of the A-calculus,
since Marigold objects incIude infinite streams of arbitrary finite
orders. It is easy to embed its semantic domains in Po, but not
easy to see how to embed them in some universal domain of
smaller cardinality.

3.2. Wensionali ty
Since the semantics of each Marigold flow-graph are given

directly, rather than with respect to an environment, function
definitions have the property of extensionality. Extensionality
means that a definition always has the same meaning as a
mathematical function regardless of context. This is an important
and desirable property of a notation for programming, and one
that is absent, in general, when functions are denoted by expres-
sions in the A-calculus. It holds of such expressions only when they
are closed, i.e. contain no occurrence of a free variable.

Note that when names are used on function nodes in Marigold
graphs, as they have been in the examples of Sec. 2, that the
names are not free variables. Names denote specific (i.e. constant)
sub-graphs, and meanings are given to fully instantiated graphs.

The extensionality property also holds for functions
represented as streams in Marigold, for the stream is a manifesta-
tion of the trace of a function. Of course, extensionality also
implies that there can be no computable equality predicate on
functions, just as there can be no computable equality on infinite
stream objects. Equality has not been included as a primitive
predicate in Marigold. It can be defined in the language for any
algebra whose carrier is a set of finitely-presentable objects, such
as the integers or the rationals, but not the reds.

3.3. Semantics of flow-graphs
Partially additive categories have been studied and elaborated

[ArMBO] in order to provide a semantic foundation for programs,
and more specifically, for programs specified by flow-graphs. Their
development was motivated by the earlier work of Calvin Elgot
[Elg72, Elg?5].

The basic idea is that the meaning of a program can be
expressed as a "sum" of the meanings of the distinct paths through
the program flow-graph. The set of distinct paths must be count-
able, but may be infinite, as will ordinarily be the case if a flow-
graph contains cycles. A requirement for use of this method is
that data-flow paths are determined uniquely by the program flow-
graph and its input data. The theory of partially additive monoids,
generalized to categories, has made these notions precise. The
theory guarantees the existence of unique fixpoints to recursion
equations that are expi-essed directly in terms of flow-graphs.

Without recapitulating the theory of partially-additive
categories, let us give the axioms satisfied by the principal opera-
tors of Marigold which justify Marigold schemes as such a category.
The following axiom

is an instance of what is called a compatible sum aiom in [ArM80].
It establishes that 63 is a partially-additive operator. A second
axiom,

is an instance of what is called the untying h o r n . These are the
only axioms of a partially additive category. We shall later give
analogous axioms to justify the inclusion of the p operator. - Let us illustrate next the flow-graph equation of the Marigold
primitive recursion scheme, and describe its fixpoint. Triangle
diagrams of this particular sort are called Elgot iteration
diagrams.

You can read this diagram as the equation

Its fixpoint is the function which, when app l i e~ to a value a, yields
the infinite stream

This value is well defined in the object domain of Ma-igold sernan-
tics.

The following graph

represents a projection function p (p) : A-stream + A-stream
Hovfever, when p is a recursive predicate, it also defines a comple-
mentary projection, p (- p) . The two projections satisfy the a~ioills

PW u ~ (- p) = i d (III. a)

P @) ncl(-p) = @ (111. b)

Axiom II1.a is the compatible sum axiom and 1II.b is the untying

axiom for the p-operator of Marigold.
The following diagram

has a fixpoint which is the function that, when applied to an A-type
value, a , yields the first component f "(a) for which p (f "(a)) is
true from the A-stream

<a. f (a11 f (f (a)) , f (f (f (a))). . . - f '(4% - . >
If there is no such component, then of course the fixpoint is a par-
tial function undefined on the argument a; i t yields 1 A. Similarly,
in case p is undefined on some element f i (a) of a stream, for any
index i < least n for which p (f (a)) holds, then the fixpoint is a
function undefined on a .

Finally, we offer a theorem (the proof is omitted here) which
relates the Marigold p-operator, which is a projection from a
stream to a substream, to Kleene's p-operator, which is a projec-
tion from a stream to an element of the stream. Kleene's operator
has an exact counterpart in Marigold; let

Using this abbreviation, we can state the following
Theorem: Let H(f , p) be

Then

1. Evaluation of Marigold graphs
Marigold flow-graphs are evaluated by graph reduction. Graph

reduction is a demand-driven, or lazy evaluation strategy in which
streams are suspended until a component is demanded, then
evaluated component-by-component in response to demands. Any
graph, once bound to argument values, is an expression that stands
for a value in the carrier set of an implementation algebra, if in
fact it represents any value at all. Evaluation may be thought of as
a process that replaces a graph by the value that it stands for.
Under replacement of component graphs by values, no component
graph is ever evaluated more than once; i.e. there is full value-
sharing in evaluation by graph reduction.

Graph reduction of Marigold graphs must necessarily be
demand-driven because the semantics of Marigold include infinite
sequences; recall that the primitive recursion scheme applied to
finite arguments has only infinite streams as models. Ho~vever, the
task of programming is made easier by the fact that one does not
always have to worry about the finiteness of objects; in fact the
only way to obtain a non-terminating evaluation is. through use of
the p-operator. If a p operator is invoked on an infinite stream to
produce the next element that satisfies a predicate p , when in fact
no element of the stream satisfies the predicate, then the search
will not terminate.

There is reason to conjecture that it will be possible to obtain
highly efficient evaluators for Marigold programs. A s the reader
may have noticed, the program schemes obtained are inherently
iterative; there is no need to "discover" instances of tail-recursion
and translate them to iterative form for the evaluator. The com-
plexities of evaluation have entirely to do with managing suspended
streams efficiently. This is a topic that has not been as extensively
investigated as it should be, and I hope that the attractiveness of
Marigold as a programming notation will help to motivate research
into better implementation schemes for dealing with suspended
objects.

References
[ArMBo]

Arbib, M.A. and Manes, E.G., Partially additive categories and
flow-diagram semantics, J. Algebra 62, 1 (Jan. 1980), 203-227.

[ArMBZ] ------ , The pattern-of-calls expansion is the canonical
fixpoint for recursive definitions, J.A. CM. 29, 2 (Apr. 1982),
577-602.

[Bac?8]
Backus, J.W., Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs,
C.A.C.M. 21, 8 (Aug. 19?8), 613-641.

CElg721
Elgot, C. C., Remarks on one-argument program schemes, in
"Formal Semantics of Programming Languages" (R. Rustin,
ed.), Prentice-Hall Inc., Englewood Cliffs, N. J., 1972.

CElg751 ------------ , Monadic computation and iterative algebraic
theories, in "Proceedings of Logic Colloquium "73" (Rose and
Shepherdson, eds.), North-Holland, Amstel-dam, 1975.

[FrW 761
Friedman, D.P. and Wise, D.S., COKS should not evaluate its
arguments, in "Auto~llata, Languages and Fsogramming"
(Michaelson and Xlilner, eds.), Edinburgh L'niv. Press, 1976,
257-284.

[Hec??]
Hecht, M.S., "Data-Flow Analysis of Computer Programs", Amer-
ican Elsevier, Key; York, 1977.

[HeM76]
Henderson, P. and Morris, J.H. Jr., A lazy evaluator, in Proc. of
1976 Sympos. on Principles of Programming Languages, ACM,
New York, 1976, 95- 103.

[Hen801
Henderson, P., "Functional Programming", Prentice-Hall Inter-
national, London, 1980, pp. 232-234.

[Ke1?9]
Keller, R.M., Semantics and applications of function graphs,
Dept. of Computer Science, Univ. of Utah, Aug. 1980.

[Nor811
Nordstrom, B., Programming in constructive set theory: some
examples, in Proc. of 1981 Conf. on Functional Programming
and Computer Architecture, ACM, New York, 1981, 141-153.

