






below 0.15 VAF. If we consider this, it does appear that an increase in heat saturation exist in 
the 0.07 - 0.15 VAF range for Set 3, however, this is hardly conclusive. Perhaps the most 
striking features are the largely uniform bands presented by the No Model conditions for Sets 1 
and 2. If we look to Figure 4.1.1, we see that the VAF ranges exhibiting the highest sensitivity 
specificity AUCs for these conditions appear to cluster together. This may indicate that their 
performance is largely attributable to a lack of noise contributed by a background error model.


5. Discussion 

5.1 BQSR and Background Error Model Performance 

For all synthetic datasets, the No Model No BQSR aggregate condition was found to be more 
sensitive than the No Model BQSR condition. Furthermore, for Sets 2 and 3, those exhibiting 
impurity and clonality, BQSR was found to also reduce specificity. This tentatively supports the 
alternate hypothesis for the first research question; that the BQSR software may diminish the 
ability of the GATK variant calling pipeline to detect low frequency variants. However, given that 
only Set 3 exhibited low frequency variants and that the bulk of true variants within that set 
were not low frequency variants, the extent to which low frequency variants contributed to 
these results is highly debatable. Importantly, this surfaces a bigger question: Is the BQSR 
software improving performance at all? Prior research has found this to be questionable, with 
an explanation being that the base calling algorithms on contemporary platforms are much 
improved over their predecessors, removing the need for BQSR software entirely [47-48].


Clear performance differences were seen between background error model conditions. While 
Bloocoo regularly exhibited the most balanced performance according to its sensitivity-
specificity AUC, for Sets 2 and 3 the No Model condition exhibited superior sensitivity while 
maintaining good specificity (Table 4.2.1). For Set 3, considering the complete sensitivity 
specificity tradeoff alongside a preference toward higher sensitivity, the specificity exhibited by 
the Bloocoo No BQSR aggregate condition was far superior, while yielding only a mild 
reduction in sensitivity, in comparison to the No Model No BQSR condition (which exhibited the 
highest sensitivity). Lighter and BFC were found to perform relatively poorly by comparison, 
however, it’s unlikely this can be put down to the software itself – the lack of parameter 
optimization may have handicapped these background error model conditions. Similarly, it’s 
possible that for Bloocoo the default parameters were more appropriate for the synthetic data. 
This may be supported by the fact that each software implements a variation of the k-mer 
spectrum-based approach (Table 5.1.1).
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Table 5.1.1 – Overview of Error Model Characteristics 

Perhaps the most important takeaway here is that a background error model condition 
(Bloocoo) without BQSR outperformed its No Model control. This incentivizes further 
exploration of background error models for somatic variant calling – clearly, with further 
research and validation, they may be of value for the problem of variant detection. The more 
relevant question to this study, however, is whether a background error model can in fact 
enhance the detection of low-frequency variants. This question remains largely unanswered. It 
is notable, however, that for Set 3 the No Model condition exhibited the greatest sensitivity. 
Could it be that the error correction software evaluated stripped out the true variants in the 
0.05 - 0.15 range? Unfortunately, given the complete lack of low frequency variants (i.e. < 0.05 
VAF) in the data, this will remain an open question for now.
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Background 
Error Model

Greedy 
Algorithm Approach Targeted 

Error Type
Quality 
Aware? Basic Approach

BFC No k-mer 
spectrum Substitutions Yes

Classify k-mers as strong or weak by 
counting. For each read, find longest 
trusted substring by extension of solid k-
mer on both ends. If no trusted k-mer 
matches the read, enumerate all trusted k-
mers 1 mismatch away. If a trusted k-mer is 
found, undergo substring extension [49]. 
Reads marked uncorrectable if no eligible 
k-mer is found or correction requires 
multiple mismatching k-mers. 

Bloocoo Yes k-mer 
spectrum Substitutions No

Classify k-mers as strong or weak by 
counting. Correct reads with an 
unambiguous error to their corresponding 
strong k-mers. Ambiguous reads are 
corrected through extension of the strong 
k-mer and a majority vote algorithm. False 
positives are avoided by verifying 
corrections are supported by multiple solid 
k-mers [50, 51].

Lighter Yes k-mer 
spectrum

Substitutions / 
Indels No

Randomly subsample k-mers with 
replacement from the k-mer spectrum, filter 
reads with N bases, place acceptable k-
mers into first Bloom filter. Classify k-mers 
and strong or weak with threshold and 
combine consecutive trusted k-mers and 
insert into second Bloom filter. For each 
read, find longest consecutive k-mer in 
second bloom filter that matches. Correct 
error reads through extension, leaving 
ambiguous corrections uncorrected [52]. 



5.2 Best Practices & in silico Experimental Design 

Figure 5.2.1: The Genome Analysis Toolkit Best Practices for Germline SNPs and Indels in 
Whole Genomes and Exomes – June 2016 

Summary: Best practice documents for variant detection pipelines rarely articulate all computational 
steps required for reproducibility. For example, the best practices above indicate a single ‘Base 
Recalibration’ step, which in reality consists of applying the Base Quality Score Recalibration, Analyze 
Covariates, & Print Reads GATK modules to the sequencing data in four separate steps – the 
construction of two models of quality scores covariates, a visualization (intended to serve as a sanity 
check), and then the application writing of a BAM file with the recalibrated quality scores. Despite minor 
oversights in this figure, the documentation for this particular procedure, found elsewhere, is quite good. 
More revealing are the details for evaluating the callset output by this GATK pipeline – does the callset 
‘look good?’, if yes, use it, if no, troubleshoot. Unfortunately, the ‘look good’ guidance embodies much 
of the challenge with the ‘best practices’ presented here – the lack of clarity requires significant expertise 
to reconcile exactly what dependencies and actions should be taken to execute the procedure. This gap 
precipitates ample opportunity for a researcher to introduce bias into an experiment and waste 
substantial time and resources. It is noteworthy that this documentation is far superior to the 
documentation available for other GATK use cases, one of which was pursued for this study. 

Source: GATK Best Practices Documentation (URL: https://software.broadinstitute.org/gatk/best-
practices/bp_3step.php?case=germshortwgs). 
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In an effort to manage the complexity of variant calling pipelines & experimental design, some 
pipelines developers have sought to author best practices documentation based on a set of 
specified use cases for their pipeline software. Unfortunately, no such ‘best practices’ appear 
to adequately cover the many considerations involved in an in silico analysis (let alone the in 
vitro considerations they are often dependent on) and thus may fail to precipitate their intended 
generalizability. Indeed, it is easy to read available best practice documents and imagine two 
separate researchers implementing two very different pipelines given the same set of 
instructions. Differences in sample acquisition, sample processing, library preparation, 
sequencing platform, computational resources, software availability, and parameterization are 
liable to lead to numerous inconsistencies due to differences. Much of these decisions may be 
traced back to the, often unaccounted for, granular decisions made throughout the course of 
the generation and analysis sequencing data – with a potentially catastrophic effect for 
reproducibility.


A good example of a ‘best practice’ documentation that may instill a poorly founded sense of 
experimental validity is the June 2016 best practice guidelines published for the GATK on the 
application of whole-genome sequencing (WGS) to the discovery of germline single nucleotide 
polymorphisms (SNPs) and indels [38-39, 67]. While the documentation is ostensibly well-
defined and subject to regular revisions, an attentive reading reveals omissions and a lack of 
clarity that makes the use of the term ‘best practices’ optimistic. Although the visual guidelines 
reveal the basic procedures required, they lack a clear articulation of the actual steps in the 
analytics pipeline (Figure 5.2.1). Furthermore, these same GATK best practices state, under the 
heading ‘What is not Best Practices?’, that “the canonical Best Practices (as run in production 
at the Broad) are…optimized for the instrumentation (overwhelmingly Illumina) and needs of the 
Broad Institute sequencing facility” and that “they can be adapted…however, any workflow 
that has been significantly adapted or customized, whether for performance reasons or to fit a 
use case that (is) not explicitly covered, should not be called ‘GATK Best Practices’” [55]. Thus, 
it must be asked, is it possible to reproduce the Broad Institutes’ so-called ‘best practices’ at 
all? In this case, perhaps rather than claiming ‘best practices’, the Broad should consider 
renaming their ‘best practice’ workflows ‘this is how we do it’ 
3

Clearly stated, absent a full enumeration of the processes required to replicate any scientific 
best practice, the reproduction of any analysis or experiment:


• May lean inappropriately on a researchers’ best judgment and expertise.


 Perhaps the Broad Institutes’ naming decision was influenced by an aversion to copyright infringement 3

from Montell Jordan on the grounds of his 90’s hit single.
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• May yield a compounding effect, whereby researchers lack a valuable tool for the quality 
documentation of their own work.


And, further, that:


• A failure in documenting best practices and/or a lack of transparency in best practices may 
expand the potential for researchers to unconsciously insert individual biases. 


• Poor quality best practices may yield significant time and resource inefficiencies, resulting in 
a significant opportunity cost to researchers attempting to reproduce them.


That is not to say best practices and quality documentation are a silver bullet to many-a-
researchers’ woes, but rather that quality best practices provide an objective, widely available 
substrate upon which other researchers may construct experiments, pipelines, and software 
rationally and with full clarity. 


5.3 Recommendations for Bioinformatics Software Development & Distribution 

Throughout the course of this research numerous software limitations were encountered, many 
of which are common across scientific computing. Examples of these limitations included 
resource constraints, particularly relating to the memory usage of various algorithms and/or 
their implementations, to incompatible dependencies, poor documentation, a lack of graceful 
degradation, and poor adherence to standard error management protocols. These however 
represented relatively minor limitations however. 


In contrast, much of the software downloaded and deployed for this study did not follow 
contemporary standards for software development. Comparative studies such as this are made 
challenging by heterogeneous software development and distribution practices. Fortunately, 
solutions for managing the distribution and deployment of software are widely available for 
free, mature, and offer significant utility for tracking the provenance of code and contributions 
by multiple authors. The following recommendations are designed to improve the 
reproducibility of analyses and assure proper tracking of software assets.


• Software should be maintained in a Git protocol based repository, such as Github, Gitlab, 
or Bitbucket


• Continuous integration and unit testing of builds should be managed via an automated 
service, such as Travis-CI, Bamboo, or Jenkins.
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• If possible, software should also be made available via a Docker image. Alternatively, 
validated build scripts should be distributed to the appropriate package manager(s) (e.g. 
Homebrew, Linuxbrew, pip, Conda, npm). This significantly facilitates reproducibility. 


• If possible, documentation should be managed through a language specific documentation 
framework and versioned with Read the Docs.


Executed correctly, these four points enable software to be widely distributed in a fashion that 
is compatible with modern systems. Software is less prone to bugs, and users of software are 
able to create, track, and resolve any bugs that do arise. Reproducibility can be significantly 
enhanced via the appropriate packaging of software and its dependencies. Documentation is 
prioritized and made widely available. Combined, these offer huge benefits to both the author 
and end-user of a software. 


6. Limitations & Future Directions 

6.1 Synthetic Data Intended Use & Limitations 

The ICGC-TCGA-DREAM Somatic Mutation Calling Challenge data, used for the development 
of the pipeline module evaluation prototype and analysis, is subject to a number of limitations 
and caveats. 


First and foremost, the data used for this study was selected for the pipeline development with 
quick accessibility being a primary consideration. The data is WGS with a coverage of 30x, 
which limits the ability of any variant calling method to confidently detect variants, particularly 
low frequency variants. If we consider a base call to be a hypothesis test (where h0 assumes 
that a variant does not exist and the alternate h1 that a variant does exist), we can consider 
depth of coverage at the base position to be analogous to sample size; depth of coverage is 
essential in determining the power of the test to detect a putative variant at the given position 
at or above a predefined minor allele frequency (MAF). Given the structure of the variant calling 
problem and the aforementioned challenges presented by somatic samples (tumor impurity, 
clonality, and CNVs), sequencing data collected with an ultra-deep NGS (defined as greater 
than 1000x (targeted) coverage [68]) approach is highly preferable for somatic variant calling in 
the clinical setting. There are several reasons for this: 1. When combined with databases of 
known variants, such as dbSNP [45], COSMIC [63-64], and ClinVar [69], the ultra deep 
sequencing approach is sensitive even without a normal pair, particularly for known variants 2. 
Ultra deep sequencing is also capable of revealing the complex genomic architecture of a 
cancer that may be particularly relevant in the clinical context [70] and 3. Variants are only 
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actionable if a precision therapy is available; this reduces the genomic search space making 
targeted panels more cost-effective, however, this can also limit the ability to discover and 
build evidence for novel variants. Thus, while ultra-deep NGS approaches are largely fit for 
purpose in the clinical setting, there are significant differences between somatic variant calling 
with ultra-deep NGS without a normal pair versus low coverage WGS with a normal pair, 
differences which may challenge the translation of the present iteration of this research into the 
clinical diagnostic setting.


A second limitation that is less apparent arises from the fact that the data used was synthetic, 
having been generated from the BAMSurgeon software [61]. BAMSurgeon outputs an aligned 
‘tumor’ BAM file containing simulated mutations along with a truth VCF, using a provided BAM 
file, which represents the ‘normal’ condition. While BAMSurgeon does ostensibly reproduce 
genomic architectures and mutations similar to those observed in cancer, the degree to which 
these simulated architectures are truly representative of the complex biology of cancer 
samples, as seen in the clinical context, is unclear. For example, a documented limitation of the 
software is a tendency towards false-positive mutations in structural variant (SV) regions. A 
workaround suggested by the authors is to generate separate BAM files to test for different 
types of mutations [66] – an analytical scheme that may discount any covariation that may 
occur between SV regions and any cis single nucleotide variants (SNVs) or vice versa. In 
consideration of this, a larger question precipitates: Given a proposed analysis, what level of 
granularity is needed to computationally model sequencing data from a tumor sample such 
that it is practically representative of a truly biological counterpart? Further, how can we 
measure the degree to which simulated data represents a true biologically derived sample 
given a specific use case? These questions have yet to be answered and consequently 
precipitate a reduction in the confidence of any synthetic data analysis. While a counterpoint 
may be that even a true biological gold standard may be weakened by reductions in 
confidence, a biological gold standard can at least be made to closely mimic clinical data 
being generated at a specific site. For this reason, this research stands to benefit significantly 
from the analysis of background error models using such a biological gold standard. 


6.2 Ultra Deep Sequencing Fixed Dilution Series 

A future direction currently being pursued is the analysis of a biological gold standard 
sequenced with an ultra deep sequencing methodology. In fact, at the time of writing, the gold 
standard has already been generated via the serial dilution of DNA from an AML pre-treatment 
diagnostic assay sample into a 35-day post-treatment sample from the same patient. The 
dilutions were scaled at 10%, 3%, 1%, 0.3%, 0.1%, 0.01% and 0.0% MAF, resulting in the 
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experimental allele frequencies described by Table 6.2.1. This experiment will enable an 
improved examination of the research questions explored here by alleviating some of the 
limitations arising in the analysis of the WGS synthetic data.


Table 6.2.1 - Ultra Deep NGS Gold Standard Experimental VAFs by Variant 
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IDH NRAS NPM1
target % VAF 
of sample

var 
reads

ref 
reads % VAF

var 
reads

ref 
reads % VAF

var 
reads

ref 
reads % VAF

10.00 159 1288 10.9882 155 994 13.4899 99 637 13.4510

3.00 86 2576 3.2306 84 2305 3.5161 76 1515 4.7768

1.00 26 1595 1.6039 15 1143 1.2953 19 849 2.1889

0.30 6 1138 0.5244 2 985 0.2026 8 613 1.2882

0.10 5 1056 0.4712 0 806 0 7 535 1.2915

0.01 2 1373 0.1454 0 871 0 4 692 0.5747

0.00 0 to 1 1108 0.0901 0 781 0 3 468 0.6369
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8. Supplemental 

8.1 Interleaved Paired-End Shuffling Algorithm


A simple script to shuffle interleaved paired-end FASTQ files was developed for use to 
realignment with BWA-mem. The shuffling algorithm first reads in chunks of n pairs, 
shuffling these chunks using the default random.shuffle() Python implementation, it 
then writes the chunks to a temporary directory. Each chunk is counted, with each read 
group FASTQ generating between 600 - 1300 chunk FASTQ files with 50,000 pairs (the 
default n parameter, effectively 100,000 reads), given the synthetic data. Next, the 
algorithm reassembles the FASTQ by randomly writing the shuffled FASTQ chunks to 
the new shuffled FASTQ file. The Python script is available via the source code 
repository (URL: https://github.com/greenstick/thesis-pipeline/blob/master/utils/
shuffle-fastq.py). The current implementation runs in a single thread and lacks 
parallelization, however, this may be updated in the future. 


8.2 Evaluated Background Error Models 

See attached.
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9. Addendum


Immediately prior to the original oral defense of this thesis it was found that some of the 
AUC values computed for each pipeline condition may have been artificially buoyed by 
the introduction of significant numbers of false positive corrections by the background 
error models that were subsequently classified as errors by the MuTect 2 variant caller 
(this is particularly noticeable in figures 4.1.4 and 4.3.1). While it is not believed that this 
affected the performance comparison of the conditions in relation to their ability to 
detect variants, this is nonetheless an area of of ongoing research for this projects. It is 
believed that the tracing of these false positive corrections along with the appropriate 
parameterization of the background error models will greatly mitigate or eliminate this 
effect and allow for better confidence in the quality of the comparisons made in this 
thesis.
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