Author

Bennet Vance

Date

January 1998

Document Type

Dissertation

Degree Name

Ph.D.

Department

Dept. of Computer Science and Engineering

Institution

Oregon Graduate Institute of Science & Technology

Abstract

Join-order optimization plays a central role in the processing of relational database queries. This dissertation presents two new algorithms for join-order optimization: a deterministic, exhaustive-search algorithm, and a stochastic algorithm that is based on the deterministic one. The deterministic algorithm achieves new complexity bounds for exhaustive search in join-order optimization; and in timing tests, both algorithms are shown to run many times faster than their predecessors. In addition, these new, fast algorithms search a larger space of join orders than is customary in join-order optimization. Not only do they consider all the so-called bushy join orders, rather than just the left-deep ones, but-what is more unusual-they also consider all join orders that contain Cartesian products. The novel construction of these algorithms enables them to search a space including Cartesian products without paying the performance penalty that is conventionally associated with such a search.

Identifier

doi:10.6083/M4416V01

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.