ON THE RENDERING OF ANIMALS IMMUNE AGAINST THE VENOM OF THE COBRA AND OTHER SERPENTS; AND ON THE ANTIDOTAL PROPERTIES OF THE BLOOD SERUM OF THE IMMUNISED ANIMALS.

Communicated to the Royal Society of Edinburgh, June 3rd, 1895.

BY THOMAS R. FRASER, M.D., LL.D., F.R.S.,
Professor of Materia Medica and Clinical Medicine in the University of Edinburgh.

(Abstract.)

TRADEITIONS AS TO IMMUNITY.

One of the most striking and interesting of the many traditions and current beliefs regarding venomous serpents is that a power may be acquired of freely handling them without injury, and even of successfully resisting the poisonous effect of their bites. Tock, for example, the Marse of Italy, the Gouni of India, and other ancient tribes and sects, were stated to have been immune against serpents' bites, and to have been able to exercise a remarkable influence over even the most venomous of the animals; and those who have been explained on the supposition that serpents' blood was present in the veins of the members of these tribes and sects. In more modern times, and, indeed, at the present day, the same belief is stated in the writings of travellers; and it has been expressed by poets and novelists, and among the latter, with a half admitted conviction of its reality, by Wendell Holmes in his Romance of Destiny. It may be instructive to associate with this belief in the possession of venomous serpents' blood a belief in the power successfully to resist the poisonous effects of serpents' venom, and with the evidences in its support, the further belief that venomous serpents are themselves protected against the effects of bites inflicted upon them by individual or other species. On more anatomical grounds it is difficult to understand how serpents could escape the absorption of their own venom through mucous surfaces, even admitting that absorption of venom does not occur in serpents' venoms. Venomous serpents, however, are so frequently introduced into their bodies, in situations where absorption could not fail to occur, by the bites inflicted upon them by other serpents, that the conclusion seems undeniable that they possess some protective quality, without which probably no venomous serpents would now be in existence. Not only have many general observations been made in support of this belief, but it has been proved to be correct by direct experiments, such as those made by Fontana of Tuscany more than a century ago, by Guyon, Lacerta, Waddell, Kaufmann, and Sir Joseph Fayrer.

SOURCES OF SUPPLY.

India.—I received my first supply of cobra venom in 1880, from Surgeon-Colonel Moir, lately of Meerut, and soon afterwards—also in small quantities—from the late Dr. Shortt, and from Sir Joseph Fayrer, the Thakore of Gondal, and Dr. Phillips. Larger quantities were subsequently obtained from Surgeon-Captain French, and through the kind efforts of Sir William Mackinnon, Director-General of the Army Medical Department, from each of the presidencies of India; and they had so far increased my stock as to enable me to begin work towards the end of last year. Early in this year a large additional supply was received from Surgeon-Colonel Cunningham, of Calcutta, and this gentleman has quite recently sent nearly another large quantity of several grammes of dry venom.

America.—Besides the specimens of the venom of the cobra of India, I have also been fortunate in obtaining specimens of venom from other parts of the world, from America, from Dr. Mitchell, of Philadelphia—whose work on the chemistry and physiology of serpents' venom constitutes the great advance of the century on the venom of viperine serpents—has supplied me with the type of three species of rattlesnakes; namely Crotalus horridus, C. adamanteus, and C. durissus, and also with a specimen of this species from the head (Triphysophis contortrix) of Australia.—Dr. Thomas Bancroft, of Brisbane, has at various times sent specimens of the venom of the black snake (Pseudochis porphyreus), the brown snake (Pseudochis australis), and of a large unidentified snake of the Diamantina district of South Australia (probably a new species of Diamantina).—Africa.—The kindness of Mr. William Smith, a distinguished naturalist of Cape Town, of Dr. Brooks, of the Orange Free States, and of Dr. John Murray and Mr. Van Putten, of Cape Colony, has placed at my disposal small quantities of the venom of the puff adder (Vipera orina), the night adder (Echis crepusculus), the western adder (Echis carinatus), and the common or "Ring Hals Flang" or "Rinkas" (Sepedon hamadryas); and Dr. John Anderson, formerly Professor of Natural History at Calcutta, has, in his last work, forwarded to me living specimens of the Vipera cerastes, to be followed by living specimens of the cobra, which his present connection with the society of Egypt has given him peculiar facilities to obtain.

In the meantime, however, further evidence has been obtained in support of the reality of the probabilities to which I have referred. Sewall, using the venom of the rather common KAnthack, the cobra, and Phisalix and Bertrand that of the viper, obtained experimental evidence of the possibility of producing by "insolation" a certain slight degree of resistance against the toxic effects of these venoms. The relationship of such observations to the recent discoveries in connection with the toxins of tetanus, diphtheria, and other diseases could not long remain unrecognised. Dr. Bancroft and others have recently suggested that the blood of animals rendered immune to snake venom might be found of service as a remedy in snake-bite. Within the last few months Phisalix and Bertrand have obtained experimental indications of the antidotal power of the blood serum of animals immunised, but only to a low degree, against the venom of vipers. I have been working, in the Pasteur Institute of Paris, after several unsuccessful endeavours had led him to express the opinion that immunity against snake venom could not be produced, afterwards succeeded in obtaining evidence of its production, and of the antidotal power of the blood serum to counteract the effects of venom.

THE RENDERING OF ANIMALS IMMUNE AGAINST THE VENOM OF THE COBRA AND OTHER SERPENTS.

In this the first portion of the investigation the venoms that have been used are only four in number—those, namely, of the cobra of India (Naja tripudiana), of the Crotalus horridus of America, of a large colubrine snake, probably a species of Diamictis, from South Australia, and of the Sepedon hamadryas of Africa. The venoms are therefore of the most deadly of the poisonous serpents of Asia, America, Australia, and Africa respectively; and, further, they are representative of the chief differences that occur in the composition and action of venoms, for they are derived from members of the two great groups of the colubrine and viperine serpents.1

An essential preliminary to exact investigations with active substances must always be the determination of the activity of the substances. The only convenient and for doing this is to define the smallest dose capable of producing death for any given weight of animal—that is, the minimum lethal dose. The venoms in their natural state are inconstant in activity, mainly because of variations in the quantity of the waste products they contain. However, it has nearly always been received in the form of a dry solid, but when this was not so it has been dried in vacuo over sulphuric acid.

Outside of India there are few persons skilled in the hazardous task of taking venom directly from living serpents. Accordingly, with few exceptions, the other venoms were not received in a pure form but in the form of the dried venom glands. From these glands, however, the poisonous constituents may easily be extracted with water, and on evaporating the solution over sulphuric acid an active dry venom was obtained, containing, however, other substances besides those which are active. I am not in a position, therefore, to make any statement in regard to the relative activity of the different venoms. For the objects in view what only is necessary is that the exact minimum lethal dose of each venom used should be known, whether it be pure or diluted with a certain small amount of inert matter. Each of the four venoms was, however, found to be very active, but the cobra venom especially so.

LETHAL DOSES.

Experiments were made with it on several animals—as the guinea-pig, rabbit, white rat, cat, and the innocuous grass snake (Natrix natrix). Very considerable differences were found to occur in the minimum lethal dose for

1. My supply of cobra venom being much larger than that of any of the others, this venom was chiefly used in the experiments; and in all of them to be referred to the administration was effected by subcutaneous injection.

[1798]
each of these animals. For the guinea-pig the minimum lethal dose per kilogramme was 0.00018 g.; for the rabbit, 0.000245 g.; for the white rat, 0.000252 g.; for the cat somewhat less than 0.005 g. On the other hand, 0.0102 mg. of the venom of the grass snake caused a noticeable effect. In 10 of the 11 cases of the larger dose, the animals died within two hours after injection, but the last survived a few hours longer.

These facts having been ascertained, attempts were made to render animals proof against lethal doses by administering to them a succession of a gradually increasing series of non-lethal doses. These were, for the first few doses, some of the experiments, one-tenth of the minimum lethal; in others one-fifth, in others one-half of the minimum lethal; and in others almost as great as the minimum lethal. At varying intervals the doses were repeated, and by-and-by, gradually increased, until the action of the minimum lethal dose had been attained. The subsequent doses, by gradual increments, exceeded the minimum lethal, and after five or six times the minimum lethal had been reached, it was found that the increments could be increased, so that each became twice, four times, and latterly even five times the minimum lethal, and still the animal suffered little and, in many cases, no appreciable injury.

Many accidents occurred before experience indicated the precautions and conditions that are necessary for success. Serpents' venom exerts what may broadly be described as a duplex action. It produces unseen functional disturbances, and it also produces visible changes. The latter are of a highly irritative character, causing intense congestion in the lungs, kidneys, and other organs, and, when given by subcutaneous injection, on all the structures of the skin and subjacent parts. There are apparently also some definite changes produced in the blood, with regard to which several important facts have been discovered by Dr. Martin, of the University of Sydney. Irritative effects are obviously produced by cobra venom, even in non-lethal doses, and with greatly increased by doses which exceeded the minimum lethal; but, in respect to this action, the other three venoms used are greatly more active than the venom of the cobra. Evidence was obtained to indicate that in the process of immunisation a diminution occurs in the intensity of these local actions; but this diminution does not proceed so rapidly as that in the unseen functional or other changes which are the more direct causes of death; and, further, the local irritative changes, after having been produced, are slower to disappear than the unseen functional disturbances. Until these findings had been appreciated, and, indeed, even with the adoption of precautions suggested by them, frequent failures occurred. The apparently contradictory results accordingly were obtained by the production, by gradually increasing doses, on the one hand, of symptoms which were much above the minimum lethal, so perfect that no apparent injury was caused; and, on the other hand, of an intolerance so decided that death was produced by the last of a succession of gradually increasing doses, no one of which was so great as the minimum lethal. The latter unfortunate event was frequently displayed in guinea-pigs, and attempts to carry immunisation in them to a high point were found to be extremely difficult.

Artificial Immunity.

Notwithstanding these difficulties, however, such gratifying results have been obtained as that rabbits could at last receive by subcutaneous injection so much as ten, twenty, thirty, or even more, of the minimum lethal dose without manifesting any obvious symptoms of poisoning.

Almost the only observable phenomena were a rise in the body temperature, which continued for a few hours after injection, and which contrasts with the fall that occurs after the administration of even non-lethal doses to non-protected animals, and a loss of appetite which usually, though not invariably, occurred, and was probably the cause of the temporary anorexia during the succeeding each injection. On the other hand, during the process of successful immunisation the animals increased in weight, they fed well, and appeared to acquire increased vigour and liveliness. This has been frequently exemplified in the smaller animals, such as rabbits; and also, very conspicuously, in an aged and previously sedate horse, which in the process of immunisation has now received ten times the estimated maximum lethal dose, and is still living.

It is marvellous to observe these evidences of the absence of injurious effects, and even of the production of benefit in an animal which, for instance, has received in one single dose quantity of venom sufficient to kill, in less than two hours, fifty animals of the same weight, and in the course of five or six months a total quantity of venom sufficient to destroy the lives of 370 animals of the same species and weight.

With the cobra venom I have also immunised cats, both by subcutaneous and by stomach administration; but the significance of the latter method of administration must be reserved for a future communication. As I have stated, a horse is also being immunised; and I have to express my obligations to Principal Williams for granting me the accommodation of his establishment, and to Professor Davis, also of the New Veterinary College, for much valuable assistance.

Following the same plan of research with the three other venoms, it was found that the minimum lethal dose per kilogramme for rabbits of the diamantina venom is 0.0015 g.; of the venom of Sepeond hemachates, 0.0025 g.; and of the venom of crotalus 0.004 g. The crotalus venom is, in its purity, almost equal to the cobra venom, as far as the determinations, therefore, show that cobra venom is sixteen times more powerful than crotalus or rattlesnake venom. This venom, as well as the two others, however, much exceed cobra venom in the intensity of their local action. When death is produced by crotalus venom, the subcutaneous tissues become extensively infiltrated with a large quantity of blood and of blood-stained serum, the underlying muscles are reduced to an almost pulpy blood-stained substance, and peptones decomposes very soon after death. Similar changes in the subcutaneous tissues, but to a rather less degree, are caused by the diamantina venom, and in addition hematuria, or more probably hemoglobinuria, was invariably produced by lethal and even by large non-lethal doses. I mention these circumstances to indicate the perfection of the protection which is produced by the administration of successive gradually-increasing doses; for they can be so adjusted that a dose of each venom, even three times larger than the minimum lethal, may be administered without producing more than an inconsiderable and even scarcely observable degree of local destructive effect.

In the meantime, the process of protection with these last venoms has not advanced further than three times the minimum lethal dose. This, however, has been sufficient to allow experiments to be made by which it has been demonstrated that when an animal has acquired a resistant power over the minimum lethal dose of one venom, that animal is also capable of resisting the local effect of a dose above the minimum lethal of other venoms. To a rabbit immunised by cobra venom, a dose above the minimum lethal of Sepeond venom has been administered; to rabbits immunised with crotalus venom, doses above the minimum lethal of diamantina and of cobra venom have been given; to animals immunised above the minimum lethal with the diamantina venom, doses above the minimum lethal of crotalus and Sepeond venom have been given; and in the case of the animal having received, but few symptoms of injury were produced. At the same time, in other experiments, indications were obtained that animals immunised with a given venom are capable of resisting the toxic effect of other venom more effectually than the toxic effects of other venoms.

Duration of Immunity.

My experiments have not proceeded sufficiently far to show for what length of time the protection conferred by any final lethal dose may last. I propose to make some experiments which will give definite information in regard to this point, which may possibly lead to practical applications. It has, incidentally, been discovered, however, that the protection lasts for at least a considerable period of time, even when the last protective dose has not been a large one. For
example, to a rabbit which had last received twice the minimum lethal dose of crotalus venom, the same dose was administered twenty days subsequently, and it altogether failed to produce any symptoms.

As yet no sufficient data have been obtained for affirming an explanation of these remarkable facts. It is obvious that the blood of protected animals must contain some substance or substances which are not present in the non-protected animals, and that the lethal and toxic effects of the venom are prevented. When the blood serum of protected animals is added to a solution of venom, a distinctly observable reaction occurs, and this reaction may be of significance when considered as bearing on the history of the various steps which will be taken in the remaining part of this communication, and especially with the circumstance that the blood serum itself is almost destitute of physiological activity. This protective substance may be produced in the body by the influence of the venom, but it is also conceivable that the substance is actually a part of the venom itself, which gradually accumulates under repeated administrations, whereas the lethal and toxic constituents of the venom are more rapidly destroyed or eliminated.

THE BLOOD SERUM OF IMMUNISED ANIMALS: ANTIVENENE.

Having thus succeeded in producing a high degree of protection against the doses of cobra venom, it was then desired to determine the quantity of antivenene that is sufficient to prevent death from different lethal doses of venom. The greater number of the experiments now to be described were made with antivenene derived only in the first and fourth of these series. They are, however, after the results of the first three series, of some interest, as the conditions for exactitude in simultaneous administration are perfectly obtained in the first series, and it therefore should constitute the basis for comparison between antivenenes derived from different sources; and as upon the results of the fourth series must depend the actual practical application of antivenene in the treatment of poisoning by serpents' bites.

The experiments of the first series were made with antivenene derived from the so-called minimum lethal, the minimum lethal indicated by the previous experiments was not used, but instead a slightly larger dose (0.0025 instead of 0.000245 g per kilogramme). When this certainly lethal dose, capable of causing death in five or six hours, was mixed with antivenene and the mixture then injected under the skin, it was found that so small quantities of antivenene were sufficient to prevent death as 0.5 c.c.m., 0.25, 0.1, 0.05, 0.02, 0.01, 0.005, 0.004 c.c.m. (i.e., 0.1, 0.05, 0.02, 0.01, 0.005, 0.004 c.c.m. of the weight of the animal). With 0.0025 c.c.m. (≈0.000245 g per kilogramme) there was almost no symptom of poisoning produced. In the experiments of this series with twice the minimum lethal dose recovery occurred when the doses of antivenene were 0.75 c.c.m., 0.5 c.c.m., and 0.25 c.c.m. per kilogramme but 0.5 c.c.m. per kilogramme failed to prevent death. In the experiments with thrice the minimum lethal dose of venom (a dose capable of producing death in less than two hours) recovery occurred when the doses of antivenene were 1.5 c.c.m. and 1 c.c.m., but death occurred with 0.8 c.c.m., and even with a enormous dose of four times the minimum lethal failed to produce death, or, indeed, any observable disturbance, when it had previously been mixed with 2 c.c.m. per kilogramme of antivenene.

In the second series experiments have been made only with twice the minimum lethal dose of venom. When this dose was injected into the subcutaneous tissue of one side of the body, and immediately thereafter a dose of antivenene, it was found that doses of 1 c.c.m., 2 c.c.m., and 3 c.c.m. per kilogramme failed to prevent death, but that 2.5 c.c.m. and 3 c.c.m. per kilogramme were able to do so.

In the third series the experiments have as yet been made with only the minimum lethal of cobra venom, and they show that 4 c.c.m. per kilogramme of this antivenene is able to prevent death when given thirty minutes before the venom.

In the fourth series, where the results are likely to give the clearest indications of the antidotal value of antivenene, it occurred in the experiments in which 1.5 c.c.m., 1 c.c.m., and 0.8 c.c.m. per kilogramme of antivenene were injected thirty minutes after a certain minimum lethal dose of venom; but that the antivenene was insufficient in quantity to prevent death when 0.75 c.c.m. per kilogramme or less was administered. In this series, further, it was found that 5 c.c.m. per kilogramme of antivenene was a sufficient dose to prevent death after twice the minimum lethal dose of venom, but that 2 c.c.m., 2.5 c.c.m., and 3 c.c.m. per kilogramme were insufficient.

The experiments of this series are especially interesting, as nearly all the animals showed symptoms of poisoning before the antivenene had been administered. In each of the fatal cases of death the duration of life was greatly prolonged by the administration of antivenene; and it is probable that in many instances a second injection of antivenene, made half an hour or an hour after the first, would have prevented death.

It has thus been established, on the clearest evidence, that the blood serum (antivenene) of animals protected against large lethal doses of venom is able, in varying conditions of administration, perfectly to prevent lethal doses of the venom of the most poisonous of serpents from producing death in non-protected animals.

In order to obtain some evidence bearing on the question as to whether the more powerful antivenene is produced by the long continued administration of small non-lethal doses of
venom, or by the administration of doses gradually increasing until a large lethal dose is reached, a few experiments were made with the serum of a rabbit which had received one-tenth of the minimum lethal dose nearly every two days during a period of two weeks, and after the third week, and another dose of venom was given nearly every day during the period of three months and three weeks. I did not find that the antitodal power of the antivenenes obtained from the rabbit, and nearly so effective as the antivenenes obtained from animals which had finally received a dose much in excess of the minimum lethal dose. When mixed with venom and then injected, 3 c.cm. per kilogramme of these antivenenes was insufficient to prevent death from a somewhat more than the minimum lethal dose of venom, but 5 c.cm. per kilogramme were sufficient to do so.

I have also administered 1.5 c.cm. per kilogramme of cobra antivenenes thirty minutes after a dose one-twelfth larger than the minimum lethal dose of the venom, respectively, of the *B. sepelchon hamachates*, the *Crotalus horridus*, and the *Diamentina* serpent, and the rabbits experimented on have recovered. This result is remarkable when we consider the intense destructive local effects of each, but especially of two, of these venoms is re-collected.

The experiments establishing, and to some extent defining, the antitodal power of cobra venom, further, have been made on many varieties of snakes and the results obtained have been of very great importance in considering the probable value of the antivenenes when used as an antitode in the treatment of animals of less susceptibility, among whom there appears to be sufficient evidence to place human beings. The minimum lethal dose for man probably approaches that of the cat, rather than that of vegetable feeders, such as the rabbit, guinea-pig, and white rat.

It is also to be remembered that, so far, the experiments have been made to a definition of the antitodal power in certain conditions which were not always the most favourable for the mere prevention of death. Indications have indeed been obtained which render it highly probable that death may be prevented from occurring more certainly by several administrations rather than by one administration of antivenene, and also by the introduction of the antivenene into the same parts as the venom rather than into distant parts.

It would be important also to increase the number of the experiments with the larger of the lethal doses of venom as yet administered, and it may be to employ still larger doses: although, for practical application, the larger of the doses that have already been used, as they produce death in about an hour, do not need to be increased. To these purposes I hope to apply the antivenene soon to be prepared from the rabbits which have already received forty times the minimum lethal dose of venom.

Antivenene in the Treatment of Snake Bites in Man.

For the actual application of the antivenene to the treatment of snake poisoning in man, an endeavour is being made to obtain the large quantity that is requisite from a horse now receiving considerable lethal doses of cobra venom. From this source, also, it is hoped that a sufficient quantity will be obtained to allow of the examination of the chemical properties of the antivenene, and the continued, with the object of discovering the constituent or constituents by which the antitodal effects are produced. If the isolation of the antitodal constituent or constituents can be effected, an antivenene of greatly increased power will be obtained and the range of efficient application will be increased. For these objects, however, it will be necessary to administer to the horse much larger doses than it has yet received; and the chief difficulty in this is to maintain a sufficient supply of cobra venom. By the great kindness of Surgeon-Captain Cunningham 9 g. of dry venom have already been obtained, but in order to carry the protection to fifty times the minimum lethal dose other 30 g. would be required. I have reason to hope that the India Office will proceed in making arrangements for procuring this large quantity.

The subject is one of practical importance to India, where the destruction of human life by venomous serpents is represented by an annual mortality of 20,000, and where the failure of all methods of treatment has led to the introduction of a system of extermination of venomous serpents—apparently futile in its results—in the carrying out of which large sums of money have been expended.

If we consider the facilities of success by antivenene treatment it is also to be recollected that antivenene can be obtained even more valuable than that which was used in the experiments which have been described, and that, judging from the statistics of Fayrer and Wall, in 75 per cent. of fatal cases in man death does not occur until from three to twenty-four hours after the infliction of the bite. This latter fact appears to indicate that in the great majority of the fatal cases the dose of venom does not much exceed the actual minimum lethal, and, therefore, is not so large as the dose whose lethal action has been prevented from occurring in the experiments that have been described, in which, further, the conditions of success in preventing death were not the most favourable that could have been adopted.

It appears to me, however, that an interest and importance as great as that which can be derived from this practical application of the facts is to be found in their relation to the venomous diseases—those, namely, which are produced by organisms that have found their way into the body. The evidence in favour of the curative value of the antitoxins derived from animals immunised against the toxins of these diseases seems to receive an additional confirmation from these facts. They also bring distinctly before us the circumstance that there are limits to this curative power dependent on the dose of the toxin to be counteracted, on the special antitodal activity of the antitoxin, and on the time during which the toxin has had an opportunity of exerting its poisonous action before the antitoxin is administered. If these and other conditions interfering with successful treatment are not determined and recognised, unmerited discredit will be attached to remedies which all remedies may be capable of preventing death in these diseases, by counteracting the effects of minimum lethal and larger doses of the toxin.

The Ingleby Lectures on Perforation of Gastric Ulcer.

Delivered at Mason College, Birmingham.

By Gilbert Barling, M.B., F.R.C.S.,
Professor of Surgery, Mason College.

Lecture III.

(The lecturer first discussed the anatomy and relations of the stomach, laying stress upon the oblique and almost vertical position of the stomach with the lesser curvature facing almost to the right, and upon the relations of the left subphrenic space. He condemned the proposal to excise gastric ulcer which had not perforated, but thought the operation practised by Kuster was a distinct advance in the surgery of the stomach. This surgeon had operated upon two patients suffering from haematemesis and dilatation of the stomach. He opened the anterior wall of the stomach, applied the actual cautery to the ulcer, and then performed gastroenterostomy, both of the patients recovering.)

The lecturer then said: Before dealing with the occurrence of perforation it is necessary to make a few general observations on the position of gastric ulcer and the liability to perforation in particular localities. A large majority of these ulcers occur on the posterior surface and the line of curvature, a few occupy the region of the pylorus, and a still smaller number involve the anterior surface of the stomach. The incidence of perforation does not, however, in the least correspond to the incidence of locality; ulcers on the anterior surface perforate with great frequency, those on the

3 "After long and repeated observation in India and subsequently in England I am forced to the conclusion that all the remedies hitherto recommended and advocated are absolutely without any specific effect on the condition produced by the poison." - Dr. J. Fayrer on 'The Care of Snake Poison.