






the interaction between particular effects and recursion has to be addressed by the user. 
Unlike us, however, they do not postulate any properties, hence it is up to the user to 

come up with correct liftings. As F'riedman and Sabry observe themselves, their method 
is rather inconvenient to use from a programming perspective, compared to our mdo- 

expressions and direct handling of recursion in the given monad. Unfortunately, a similar 
comparison is not immediately possible from a theoretical point of view, as the approaches 

are fundamentally different. 
From a practical point of view, much greater similarity to our work is found in Nord- 

lander's O'Haskell language. 07Haskell is an object oriented extension of Haskell, designed 
for addressing issues in reactive functional programming [65]. One application of O'Haskell 
is in programming layered network protocols. Each layer interacts with its predecessor 
and successor by receiving and passing information in both directions. In order to connect 
two protocols that have mutual dependencies, one needs a recursive knot-tying opera- 
tion. Since 07Haskell objects are monadic, value recursion is employed in establishing 
such connections. O'Haskell adds a keyword fix to the do-notation, whose translation is 
a simplified version of our mdo-notation. The 07Haskell work, however, does not try to 
axiomatize or generalize the idea any further. 

Carlsson and Hallgen discuss a variety of loop operators in the context of their work 
on stream based programming using fudgets [29]. Although the intended semantics of 
their loop operators is quite similar to those of value recursion operators, the types and 
the mechanics are somewhat different. For instance, one of their operators has the type: 

loopLeftF :: F (Either a B )  (Either a 7) -+ F B 7 

which, intuitively, ties the recursive loop over a, resulting in a fudget from P to 7. Carlsson 
and Hallgren use loop operators only in the framework of fudgets, without generalizing to 
arbitrary monads, or studying their behavior more abstractly. 

The circuit modeling example we have seen in Section 1.2 is discussed in detail in 

Claessen's recent dissertation [12]. Although Claessen points out the need for an appro- 
priate looping combinator, he does not pursue the monadic approach any further. Instead, 

he introduces the notion of observable sharing, which is a non-conservative3 extension to 
Haskell [14]. (Briefly, observable sharing allows programmers to determine whether a cir- 
cuit component is reached via a feedback loop, solving the infinite unfolding problem.) 

Claessen argues that "...loop combinators are unfortunate because they introduce extra 
clutter in the code that is hard to motivate" [12]. We believe that our mdo-notation 

addresses Claessen7s concerns perfectly, relieving the programmers from error-prone and 

3Since the addition of observational sharing violates referential transparency, the resulting language is 
no longer pure. That is, the law: let x  = M  in N EE N p x  (Ax. M ) / x ]  no longer holds. 



cumbersome uses of explicit looping combinators. In addition, the monadic approach has 

the obvious advantage of keeping the underlying language pure, providing a nice and clean 

semantic framework. 

Turbak and Wells introduce the cycamore data type, which is aimed at simplifying 

the use of cyclic structures in declarative languages [86]. The basic idea is to associate 

each node in a cycamore with a global unique identifier, similar to our doubly linked list 

example of Section 9.4. They consider implementations in both ML and Haskell, and the 

Haskell version makes use of references in the state monad to implement unique identifiers. 

As expected, Turbak and Wells employ value recursion in order to express the required 

cyclic structure. 

10.2 Future Work 

Although we have concentrated on applications in functional programming, value recursion 

certainly makes sense in other programming paradigms a s  well. One future research direc- 

tion to explore is the problem of creating cyclic structures in imperative languages. Such 

structures arise quite frequently in practice. For instance, the following example presents 

an opportunity in IBM's data manipulation language for its DB2 database system [11]:~ 

create type VDept-t as 
(name Varchar(20)) mode db2sql; 

VPerson-t create type VPerson-t as 
VDept-t (name Varchar (40) ) mode db2sql; 

create type VEmp-t under VPerson-t as 
depr - (dept Ref (VDept-t)) mode db2sql; 

a l t er  type VDept-t 
add attribute mgr Ref (VEmp-t) ; 

In this example, the user creates three types: department, person, and employee. Each 

department has a name and a manager. Each person is identified by a name. Finally, each 

employee is a VPerson-t, which further has a (reference to a) particular department. While 

the create type directives for VPerson-t and VEmp-t reflect the structure correctly, the 

VDept-t type cannot be created with both of its required attributes. Clearly, the difficulty 

arises as the VEmp-t type is not yet visible when VDept-t is created. The final a l ter  type 

directive remedies the situation in a roundabout fashion, adding the missing attribute. 

4This example was pointed out to us by David Maier. 



We see two opportunities with regard to our research. First of all, better syntactic 

support (along the lines of our mdo-notation) would help get rid of the final alter type 

directive, keeping the declaration of VDept-t self-contained, possibly simplifying further 

analyses. More importantly, if such declarations are ever given a monadic semantics, value 

recursion would be the right tool for modeling the cyclic dependency. Similar opportunities 

exist in other languages as well. 

On the theoretical side, we would like to see value recursion studied in a more abstract 

setting. In this regard, the trace-fixed point correspondence, as we have studied in Chap- 

ter 6, seems to be the right direction to proceed. We would like to investigate the reasons 

why the axiomatization via traces turns out to be too strong, hopefully augmenting the 

theory to capture the practical aspects more precisely. For instance, it would be inter- 

esting to pin down the role of the right shrinking property precisely. As we have seen in 

Chapter 3, right shrinking property is not satisfiable whenever the >> operator is strict 

in its first argument, and hence a weakening of the trace-based axiomatizations seems 

inevitable. 

Several questions remain to be explored regarding the behavior of value recursion o p  

erators. For instance, we lack a reasoning principle along the lines of fixed-point induction. 

Recall that the fixed-point induction principle states that P (fix f )  can be established by 

showing that P I A Vd.(P d + P (f d)) holds, provided P is an admissible predicate. 

(The obvious generalization: P I A Vd.(P d + P (d >> f)) =+ P (mjix f )  is not sound, 

as it implicitly assumes an unfolding view of value recursion.) It is probably the case that 

one needs to formulate and prove a separate induction principle for each new mjix, rather 

than looking for a universal principle that would work for all cases. While our properties 

provide a framework for reasoning about terms involving mfix, such an induction principle 

might prove essential for reasoning about value recursion in general. 

Another question is the automatic construction of value recursion operators for ar- 

bitrary monads. Although we have seen many "design patterns," it is still not clear 

how to define an appropriate operator for a given monad that will satisfy our properties. 

(The continuation monad seems to be the problem child in this regard.) Although it is 

highly unlikely that a magic recipe for automatic construction of such operators exists, it 

would be nice to pin down the exact conditions under which their existence (and possibly 

uniqueness) can be guaranteed. 

The semantics we have presented in Chapter 8 for modeling monadic 1/0 needs some 

improvements to simplify reasoning with symbolic terms. Furthermore, we would like 

to extend our language to support more features, such as concurrency and exceptions. 

While concurrency seems relatively easy to support, it is not immediately clear how to 

extend our system to include Haskell'98 style exceptions. More importantly, it would be 



interesting to show that the addition of monadic 110 primitives, mutable variables, and 

support for value recursion preserves the parametricity principle. Also, we would like to 

design an accompanying abstract machine semantics, which might be useful as a basis for 

constructing interpreters for similar languages. 

Whether the mdo-notation should eventually replace the current do-notation in Haskell 

is a question that will have to be answered by the Haskell community. While we believe 

that a single construct should handle both recursive and non-recursive cases, such a change 

potentially breaks existing programs, and it might be a better idea to make the switch in 

a future version of Haskell. 



Appendix A 

Fixed-point operators 

In this appendix, we briefly review fixed-point operators. Our aim is to introduce the 

terminology we use, providing pointers to the literature for details as necessary. 

In the domain theoretic semantics of programming languages, types are modeled by 

domains and functions are modeled by continuous maps. The meaning of a typical recur- 

sive declaration of the form let x = M in N is taken to be N p x  (Xx.M)/x], where 

assuming M has type a. Note that x need not be a function only, we might define recursive 

values this way as well. For instance, we have (using Haskell-like notation): 

let ones = 1 : ones in ones - - - fix (Xones. 1 : ones) 

The least fixed-point theorem states that fia: f is the least fixed-point of f [76, 921. 
That is, (i) it satisfies the fixed-point property: f (@ f )  = fia: f ,  and (ii) it is the least 

such value, i.e., for all x s.t. x = f x, we have fix f C x. We use the name Jia: only to 

mean this particular fixed-point operator over domains. 

The theory of fixed points is extensively studied [9, 10, 811. It is neither possible, nor 

necessary for us to summarize this huge body of work here; we will simply state the results 

that are most relevant to our work. 

Property A.l  (Dinaturality.) Let f :: a + P,  g :: + a. The dinaturalityl property 

of fix states that: 

fix (f - 9) = f (fix (g . f ) )  

 h he term dinaturality refers to the fact that j% can be viewed as a dinatural transformation between 
certain functors [55, 801. We will not need this level of detail in our work, so we skip the details. 



Property A.2 (BekiE.) Let f :: a x a + a. The BekiC property of fia: states that: 

fia: (Ax. fix (XY- f (x, Y))) = Jia: (Ax. f (2, x)) 

Or, equivalently, 

f;. (At. f;. (Xu. f (Tl t ,  n2 21))) = fix f 

where f :: CY x p + a x P. It is easy to generalize to arbitrary number of variables, rather 

than just two; see Winskel's textbook for details [92].2 

In Chapter 6, we consider fixed-point operators in more abstract settings, i.e., without 

assuming that the underlying structure is domains and continuous maps. We assume a 

minimal acquaintance with category theory in the following discussion [2, 701. The basic 

structure we work with is a category C with finite products. We write R for the terminal 

object. The set of arrows between two objects A and B is denoted C(A, B). We will need 

the following basic definitions [33, 791: 

Definition A.3 A fixed-point operator is a family of functions (a); : C(A, A)  + C(1, A), 

such that for any f : A + A, f - f* = f*. 

Definition A.4 A parameterkzed fixed-point operator is a family of functions: 

satisfying: 

Parameterized fixed-point property: For f : A x X + X, f - (idA, f t) = f t  

Naturalityin A: For f : A x  X + X  a n d g :  B + A ,  (f . (g  x idx))t= f t . g .  

Definition A.5 A Conway operator is a parameterized fixed-point operator that further 

satisfies: 

Dinaturality: For f : A x X + Y and g : A x Y + X, (9. (aftX, f))t = g - (ida, (f - 
(rlA9Y 7 g ) )  t). 

Diagonal property: For f : A x X x X + X ,  f tt = (f -   id^ x (idx, idx))) t. 

The reader need not master these definitions in full, only a basic familiarity is sufficient. 

For the most part we will be working with fix, and using the dinaturality and BekiE 

properties given before, which are much easier to read and understand. 

2Beki~'s property appears in many different but equivalent forms in the literature [3]. The versions we 
have given here are the ones that are most suitable for our purposes. 



Appendix B 

Proofs 

In the following proofs, we assume true products. In the case of lifted products, special care 

must be taken to ensure that the difference between (I, I) and I is not visible. The cases 

when the distinction does matter have been pointed out in the text. (See Warning 2.6.7 

as well.) 

To save space, we will shorten return to q in our proofs. Also note that we use the name 

map to refer to Haskell's fmap, i.e., map :: ( a  + ,B) + m a -+ m /3 for all monads m, 

defined by the equation map f m = m >> q f. 

B.l  Proposition 2.5.2 

Given Equation 2.7, establishing 2.8 is easy. We have: 

mfix (Vx, -1. mfix (A(-, Y). f (x, Y))) 
= mfi. (At. mfix (Xu. f (nl t ,  7r2 u))) 

= mf;x (At. mfix (Xu. (A(x, Y). f (TI 2, ~2 YY)) (t, u))) 

= mfix (At. (X(x, 31). f ( ~ 1  x, n2 31)) (t, t)) 
= mjix (At. f (nl t, n2 t)) 

= m & f  

{Equation 2.7) 

In the last step, we used the fact that (nl t, 7r2 t )  = t, which only holds for true products. 

To show the correspondence in the other direction, let A x = (x, x), and note that A 

is strict (again thanks to true products). We have: 

mfia: (Ax. f (x, 2)) 
= mf;. (f - A) 

= map (TI A) (mfix (f . A)) 

= map n1 (map A (mfix (f - A))) 
= map n1 (mfi (map A . f ) )  

{nl - A = id) 

{slide) 



= map TI (mfix (Ax. mfix (Xy. (map A . f )  (a1 X ,  rn 9)))) {Equation 2.8) 
= map a1 (mfix (Ax. mfix (map A ( X Y .  f ( T I  x ,  Y ) )  . ~ 2 ) ) )  

= map .rrl (mfix (AX. map A (mfia: ( X Y .  f (a1 x7 Y ) ) ) ) )  {slide) 

= map a1 (mfix (map A - (Ax. m f i  (Xy. f ( x ,  y ) ) )  . T I ) )  

= (map nl . map A) (mfix (AX. mfia: ( X Y .  f ( x ,  Y ) ) ) )  {slide) 

= mfix (Ax. mfia: ( X Y .  f ( x ,  Y ) ) )  

In case of lifted products (Proposition 2.5.4), the proof proceeds similarly. The last 

step in the first proof is not applicable, but in that case we can replace the last Iine with 

m f i  (A  - ( x ,  y ) .  f ( 2 ,  y ) ) ,  which is predicted by Equation 2.10. The second implication 

follows similarly. 

B.2 Proposition 2.6.8 

mfix (X(x7 9) .  f x >> Xz. 77 ( z ,  h 2 ( x ,  Y ) ) )  
= mfix (At. ( f  - T I )  t >> Xz. q ( z ,  h z t ) )  

= mf;. (At. (X(u,  v ) .  ( f  . nl) u >> Xz. T,I ( z ,  h z v ) )  ( t ,  t ) )  
= mfu (Ax. mfix (Xy. ( f  - al)  x >> Xz. rl ( z ,  h z y ) ) )  {nest)  

= mfix (Ax. ( f  a1) x >=t X Z .  mfix (Xy. q ( z ,  h z y ) ) )  {left shrink} 

= mfix (Ax. ( f  . T I )  x >=t X Z .  q Cf;x (Xy. ( z ,  h z y)))) {purity 1 
= mfix (Ax. ( f  T I )  x >> X Z .  q ( z ,  fix (Xy. h z ( z ,  3 ) ) ) )  {nest ( f i x ) )  

= mf;. f >> Xz. q (2, fix (Xy. h z ( z ,  y ) ) )  {pure right) 

= mfix f >> Xz. q ( f i  ( A ( % ,  Y ) .  ( 2 ,  h z (2 ,  Y ) ) ) )  {nest ( f i x ) )  

B.3 Proposition 2.7.1 

mfix ( 4 x 7  -1. f x >+= X Y .  71 (9 ,  Y ) )  

= mfix (map ( X Y .  ( 9 ,  Y ) )  . f - all  

= map ( X Y .  ( 9 ,  Y ) )  (mfix ( f  . a1 - ( X Y .  ( 9 ,  Y ) ) ) )  {strong sliding) 

= map ( X Y .  ( 9 ,  Y ) )  ( m f i  ( X Y .  f 9 ) )  

= map ( X I / -  ( 9 ,  Y ) )  ( f  9)  {constant functions) 

= f  !I >=- X Y .  rl (Q, Y )  

The need for strong sliding is obvious, since otherwise we would have to require f q = 

f I to satisfy the precedent. 



B.4 Lemma 3.1.4 

Recall that q is a natural transformation, that is, it satisfies the equality map h - q, = 

q~ h for all h :: a + p. Assume q is strict at the type a, i.e., q, I, = I, ,, and >> is 
strict in its first argument. Pick an arbitrary type P. We will show that qp IS = I m p :  

7B IP 
= qp (const la I,)  
= (7)p - const I S )  I, 
= (map (const l a )  . 7,) I, 
= map (const I S )  (q, I , )  
= map (const I p )  I,, 
= lm , >> q . const l.p 

= I m p  

{naturality of q) 

{assumption: q, I, = I, ,) 
{definition of map ) 
{assumption: >> is left-strict) 

B.5 Proposition 3.4.2 

Given arbitrary f and g, define: 

We have: 

mjix (Ax. f x @ g x) 
= mfix (Ax. h x 1 @ h x 2) 

= mfi (Ax. (q 1 >>c Ay. h x y) @ ( q 2  >> Ay. h x y)) 

= mfix (Ax. (q 1 @ q 2) >> Ay. h x y) {Eqn. 3.8) 

= (q 1 @ q 2) >>c AY. mf;: (AX. h x Y)  {left shrink) 

= mfi (Ax. h x 1) CB mfix (Ax. h x 2) {Eqn. 3.8) 

=mfzxf  @ m & g  

B.6 Proposition 4.3.1 

We consider each case in turn: 

4.5: Right to left implication is immediate. F'rom left to right, fix (f - head) must be 

I, which only happens when f l. = I .  (Note that this establishes the strictness property.) 

4.6: Similar to the previous case. 

4.7: Simple case analysis. If mfix f is I ,  f is strict by 4.5, and both sides re- 

duce to I. If mfi f is [ ], then f I = [ ] by 4.6, reducing both sides to I again. 



Finally, if mfix f is a cons-cell, the case expression must take its second branch, i.e., 

head (mfia: f )  = head (jix ( f  . head)), which is exactly the right hand side by the di- 

naturality of fix. 

4.8: Similar to the previous case, if mfix f equals I or [ 1, both sides yield I. Otherwise, 

case must take its second branch, i.e., tail (mfix f )  = mfia: (tail . f ) .  

4.9: Consider the test expression for case. We have: 

f;. ((Ax. f x : g x )  . head) = (Ax. f x : g x )  (fi (head . (Ax. f x : g x ) ) )  

= (Ax. f x : 9 x )  (f; f )  
= f ( f ix f )  : g (f ix f )  
= @  f : 9 (f ix f )  

Hence, the case expression takes its second branch, yielding: 

mfix (Ax. f x : g x) = jix f : mfix (tail - (Ax. f x : g x ) )  

=jix f : m f i x g  

4.10: We will use the approximation lemma [7, 381, which states that: 

(Vn. approx n xs = approx n ys) + xs = ys 

for arbitrary lists xs and ys. The function approx is defined as: 

approx :: Integer -+ [a] + [a] 
approx 0 xs = I 
a p p r o x ( n + l ) l  =I 
approx (n+l )  [I = [ I  
approx (n+l )  (x:xs)  = x : approx n xs 

We will prove: 

Vn.Vf,g. approx n (mfix (Ax. f x i+ g x ) )  = approx n (naf;  f St mfiz g )  

by induction on n, implying the required result. Base case (n = 0 )  is trivial. The induction 

hypothesis is: 

Vf ,g .  approx k (mfix (Ax. f x +t g x ) )  = approx k (m@ f +I- mfix g)  (B. l )  

Note that the hypothesis is assumed for all f and g. This generality will be essential in 

establishing the induction step. We need to show: 

V f , g .  approx (k+l )  (mfix (Ax. f x i+ g x ) )  = approx (k+l )  (mfix f St mfix g )  

Pick two arbitrary functions f ' ,  g' :: a -+ [a]. It suffices to show that: 

approx ( k+ l )  (mfix (Ax. f' x i+ g' x ) )  = approx (k+l )  (mfix f' St mfix g') (B.2) 



which we establish by case analysis on f' I. The cases I and [ ] are immediate. By 4.5 

and 4.6, both sides reduce to I and approx (k + 1)  (mfix g'), respectively. If f' I is a 

cons-cell, it follows that 

Vz. f' x = (head. f ') x : (tail . f ') x (B-3) 

Simple inspection of the definition of mfix reveals that mfix f' must be a cons-cell in this 

case as well. Hence, we have: 

mf;. f' = head (mfi3: f ' )  : tail (mf;: f ' )  (B-4) 

Therefore, 

completing hhe proof. 

approx (k+l)  (mfix (Ax. f' x S f  g' x ) )  
= approx ( k+l )  (mfix (Ax. ((head . f ' )  x : (tail . f ' )  x )  +t g' x)) {Eqn. B.3) 

that the function mfixErrM satisfies strictness, purity and left shrinking 

follow from the corresponding properties of mfixM, and simple sym- 

will only present the left shrinking case to illustrate the technique. 

to overloaded operators, we will write returnM and bandM for the 

returnErrM and bindErrM for those of Err m. 

= approx 

= approx 

= f;. (head 

= f;. (head 

= approx 

= approx 

= approx 

(Ax. a 'bindErrM1 Ay. f x y )  

4.36, expand bindErrM) 

a 'bindErrMC Xy. f (unErr x )  y )  

Ay. case y of 

Ok q + f (unErr x )  q 

Err s -, returnM (Err s)) 

(k+l)  (mfia: (Ax. (head - f ' )  x : ((tail - f') x S f  g' z ) ) )  

(k+l)  (fix (head f ' )  : mfix (Ax. (tail . f ' )  x Sf g' x ) )  {Eqn. 4.9) 

. f ' )  : (approx k (mfix (Ax. (tail - f ' )  x Sf g' x ) ) )  

. f ' )  : (approx k (mfix (tail . f ' )  +I- mfia: g ' ) )  { I. H. ) 
( k+l )  ((fia: (head . f ' )  : mfix (tail - f ' ) )  +t- mfix g') 

( k+l )  ((head (mfia: f ' )  : tail (mfix f ' ) )  -I+ m f i  g') {Eqns. 4.7, 4.8) 

(k+l)  (mfix f' St mfix g') {Eqn. B.4) 



= {left shrinking on mfixM) 

a 'bindML Xy. mfixM (Ax. case y of 

Ok q -+ f (unErr x )  q 
Err s -+ retumM (Err  s ) )  

= {Proposition 2.6.2, case is a shortcut for if) 
a 'bindML Xy. case y of 

Ok q + mfixM (Ax. f (unErr x )  q) 

Err s -+ mfixM (Ax. returnM (Err s ) )  

= {fold down mifxErrM on the first branch, Proposition 2.6.1 on the second) 

a 'bindML Xy. case y of 

Ok q -+ mf;.ErrM (Ax. f x q)  
Err s -+ returnM (Err  s )  

= {fold down bindErrM) 

a 'bindEwM6 Xy. mf;.ErrM (Ax. f x y )  

B.8 Proposition 6.3.5 

We will need the following two lemmas: 

Lemma B.8.1 Let T be a monad and m& be a value recursion operator satisfying the 

right shrinking law. Let f : X + T ( B  x X )  and g : B x X + T B'. Then, 

mfix (A(-, x ) .  f x >> X Z .  g z >> X W .  q ( w ,  7r2 2 ) )  

= mf;. (A( - ,  x ) .  f x )  >)E Xz. g z >> X W .  7 ( w ,  7r2 z )  
Proof Note that the first mfix is at instance B' x X ,  while the second is at B x X .  We 

reason as follows: 

mfix (A(-, x ) .  f x >t= Xz. g z >> Xw. q ( w ,  7r2 2 ) )  

= mfix (A(-, x ) .  f x >> Xz. g z >> X W .  7 ( w ,  2 )  >> X(p, q). 7 ( P ,  7r2 9 ) )  
= {slide, X(p, q).  ( p ,  7r2 q )  is strict) 

mfix ((A(-, 4. f x >)r Xz. g z >)r Xw. q ( w ,  4 )  . ( X ( P ,  9). ( P ,  7r2 9 ) ) )  

>>- X ( P ,  9 ) .  7 ( P ,  7r2 9 )  

= mfix (A(-, t ) .  f (7r2 t )  >)r Xz. g z >t= Xw. q (w, 2 ) )  >t= X(p, q) .  7 ( P ,  7r2 9 )  

= {right shrinking) 

mjix (A(-, x ) .  f x )  >t= Xz. g z >t= Xw. q ( w ,  7r2 z )  



The second lemma states a variant of Equation 3.7: 

Lemma B.g.2 Let f :: a + m ( P , T ) ,  g :: T + m a, where m is a commutative monad. 

Then, 

m f i  (At. g (n2 t )  >> f )  >> q - ni 

= mfix (At. f (n2 t )  >> At'. g (nz t ' )  >> Xa. q (wl t', a ) )  >> q . T I  

provided mfix satisfies strong sliding and nesting. 

Proof ($ketch) Note that the first mfix is at instance P x T ,  while the second one is 

at p x a. {The proof first extends the recursion to a x ( P  x T ) ,  applies commutativity 

(Proposition 3.3.2), and then gets rid of the T argument. 

To establish Proposition 6.3.5, we need to verify that the definition of trace as given 

by 6.21 satisfies Equations 6.14- 6.20. We consider each case in turn: 

Left tightening (6.14): 

trace (X(a ,  x ) .  g a >> Xa'. f (a',  x ) )  

= Xa. mfix (X(b ,  x ) .  g a >> Xa'. f (a',  3 ) )  >> q - ni 
= {left shrinking on mf ix)  

Xa. g a >> Xa'. mfix (X(b,  x ) .  f (a',  x ) )  >> q - ~1 

= Xa. g a >> trace f 

Right tightening (6.15): 

trace ( X ( a ,  x ) .  f ( a ,  x )  >> X(b, x ) .  g b >> Xb'. q (b', x ) )  

= Xa. mj% (X(b,  x ) .  f ( a ,  x )  >% X(b, x ) .  g b >> Xb'. q (b', x ) )  >> q n1 

= Xa. m& (X(b,  x ) .  f ( a ,  x )  >> Xz.(g - T I )  z >> Xb'. q (b', 7r2 z ) )  >>E q nl 

= {lemma B.8.1) 

Xa. mfix (X(b ,  x ) .  f ( a ,  x ) )  >> Xz. ( g  - T I )  z 
= Xa. mfix (X(b ,  x ) .  f ( a ,  x ) )  >> Xz. q (nl z )  >> Xw. g w 

= Xa. mfix (X(b,  x ) .  f ( a ,  x ) )  >> q . wl >t= g 

= Xa. trace f a >> g 

Sliding (6.16): 

trace ( X ( a ,  x ) .  g x >> Ax'. f ( a ,  x ' ) )  

= Xu. mfix (X(b ,  x ) .  g x >>c Ax'. f ( a ,  x')) >> q - T I  

= Xa. m f i  (At. g (n2 t )  >> curry f a )  >> q ni 

= {Lemma B.8.2) 



Xa. mfix (At. curry f a (r2 t )  >)C At'. g (7r2 t') 

>> Ax'. q ( r 1  t', 2 '))  >)C q - r1 

= Xa. mfi (X(b,  st). f ( a ,  x')  >> X(b, x ) .  g x 

>> Ax'. q (b ,  x ' ) )  >> q . rl 
= trace (X(a ,  x').  f ( a ,  x') >> X(b, x ) .  g x >)C Ax'. q ( b ,  x ' ))  

Vanishing (6.17): 

trace ( V a ,  0).  f a >% Xb. 7 ( b ,  0)) 
= Xa. mfix (X(b,  0). f a >)C Xb. q ( b ,  0)) >> q - ri 
= {constant functions) 

Xa. f a >> Xb. q (b ,  ()) >> q . ri 
= Xa. f a >> Xb. b 

= f 

Vanishing (6.18): Let 

Then ,  

trace (trace ( X ( ( a ,  4, Y ) .  f ( a ,  ( x ,  Y ) )  >)e= X(b, ( x ,  Y ) ) .  77 ( ( b ,  X I ,  Y ) ) )  
= trace (trace (At. f (iasc t )  >> q asc)) 

= trace (trace (map  asc - f . iasc))  

= trace ( X ( a ,  x ) .  mfix (A((-, -), y). (map  asc - f . iasc) ( ( a ,  x ) ,  y))>> 77 - rl) 

= trace ( X ( a ,  x ) .  mfia: (naap asc . (A((-, -), y).  f ( a ,  (x, y ) ) ) )  >% q - T I )  

= {slide, asc is  strict ) 

trace (A(a ,  x ) .  mfix (A(-, (-, y ) ) .  f ( a ,  ( x ,  y))) >> q - >* q . ~ 1 )  

= Xa. m f i  (A(- ,  2) .  mfix (A(-, (-, y)) .  f ( a ,  ( x ,  Y ) ) )  >> q - mi . a ~ c )  
>)C q . r 1  

= {slide, ~1 asc is strict ) 
Xa. mfix ((A(- ,  2 ) .  m f i  (A(-, (-, Y ) ) .  f ( a ,  ( x ,  Y ) ) ) )  . rl asc) 

>> q - ( T I  - T I  asc) 

= {rl - 7rl - asc = r l )  

Xa. mfix (A(- ,  (2 ,  -1). mfix (A(-, (-, Y ) ) .  f ( a ,  (2 ,  ~ 1 ) ) )  >+= 77 . r1 
= {unnest triple) 

Xa. mfix (A(- ,  (2, 9 ) ) .  f ( a ,  ( $ 7  Y ) ) )  7;1 . T1 

= trace f 



Superposing (6.19): Let asc b e  defined as above, 

tmce ( W c ,  a ) ,  x ) .  f ( a ,  2 )  >> X(b, x ) .  q ( ( c ,  b) ,  x ) )  

= X(cl a ) .  mfix (A((- ,  -), 3). f ( a ,  x )  >+= X(b, x). 7 ( ( c ,  b ) ,  3 ) )  >> q . TI 
= {slide} 

X(c1 a ) .  m f i  (A(-, (-7 4). f ( a ,  2 )  >+= X(b7 x ) .  7 ( c ,  ( b ,  4 ) )  
>> q "1 - asc 

= {pure right shrinking) 

X(c7 a ) .  mf;: (X(b1 4. f ( a ,  4 )  >2= X(b, 3).  q ( c ,  b )  
= X(c, a ) .  mfix (X(b ,  x ) .  f ( a ,  3 ) )  >> X(bl, x ) .  q b' >> Xb. q ( c ,  b)  

= X(c, a) .  mfia: (X(b,  x ) .  f (a ,  x ) )  >% q TI >> Xb. q ( c ,  b)  
= X(c, a ) .  trace f a >>I= Xb. q ( c ,  b) 

Yanking (6.20): 

trace (A(a ,  a'). q (a',  a ) )  

= Aa. mf;: (X(b,  a'). q (a', a ) )  >% q - TI 

= {purity)  

Aa. q ( f ix  (X(b ,  a'). (a',  a ) ) )  >> q TI 

= Xa. q ( a ,  a )  >=E 7 . xl  

= 7) 
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