

the interaction between particular effects and recursion has to be addressed by the user.
Unlike us, however, they do not postulate any properties, hence it is up to the user to

come up with correct liftings. As F'riedman and Sabry observe themselves, their method
is rather inconvenient to use from a programming perspective, compared to our mdo-

expressions and direct handling of recursion in the given monad. Unfortunately, a similar
comparison is not immediately possible from a theoretical point of view, as the approaches

are fundamentally different.
From a practical point of view, much greater similarity to our work is found in Nord-

lander's O'Haskell language. 07Haskell is an object oriented extension of Haskell, designed
for addressing issues in reactive functional programming [65]. One application of O'Haskell
is in programming layered network protocols. Each layer interacts with its predecessor
and successor by receiving and passing information in both directions. In order to connect
two protocols that have mutual dependencies, one needs a recursive knot-tying opera-
tion. Since 07Haskell objects are monadic, value recursion is employed in establishing
such connections. O'Haskell adds a keyword fix to the do-notation, whose translation is
a simplified version of our mdo-notation. The 07Haskell work, however, does not try to
axiomatize or generalize the idea any further.

Carlsson and Hallgen discuss a variety of loop operators in the context of their work
on stream based programming using fudgets [29]. Although the intended semantics of
their loop operators is quite similar to those of value recursion operators, the types and
the mechanics are somewhat different. For instance, one of their operators has the type:

loopLeftF :: F (Either a B) (Either a 7) -+ F B 7

which, intuitively, ties the recursive loop over a, resulting in a fudget from P to 7. Carlsson
and Hallgren use loop operators only in the framework of fudgets, without generalizing to
arbitrary monads, or studying their behavior more abstractly.

The circuit modeling example we have seen in Section 1.2 is discussed in detail in

Claessen's recent dissertation [12]. Although Claessen points out the need for an appro-
priate looping combinator, he does not pursue the monadic approach any further. Instead,

he introduces the notion of observable sharing, which is a non-conservative3 extension to
Haskell [14]. (Briefly, observable sharing allows programmers to determine whether a cir-
cuit component is reached via a feedback loop, solving the infinite unfolding problem.)

Claessen argues that "...loop combinators are unfortunate because they introduce extra
clutter in the code that is hard to motivate" [12]. We believe that our mdo-notation

addresses Claessen7s concerns perfectly, relieving the programmers from error-prone and

3Since the addition of observational sharing violates referential transparency, the resulting language is
no longer pure. That is, the law: let x = M in N EE N p x (Ax. M) / x] no longer holds.

cumbersome uses of explicit looping combinators. In addition, the monadic approach has

the obvious advantage of keeping the underlying language pure, providing a nice and clean

semantic framework.

Turbak and Wells introduce the cycamore data type, which is aimed at simplifying

the use of cyclic structures in declarative languages [86]. The basic idea is to associate

each node in a cycamore with a global unique identifier, similar to our doubly linked list

example of Section 9.4. They consider implementations in both ML and Haskell, and the

Haskell version makes use of references in the state monad to implement unique identifiers.

As expected, Turbak and Wells employ value recursion in order to express the required

cyclic structure.

10.2 Future Work

Although we have concentrated on applications in functional programming, value recursion

certainly makes sense in other programming paradigms a s well. One future research direc-

tion to explore is the problem of creating cyclic structures in imperative languages. Such

structures arise quite frequently in practice. For instance, the following example presents

an opportunity in IBM's data manipulation language for its DB2 database system [11]:~

create type VDept-t as
(name Varchar(20)) mode db2sql;

VPerson-t create type VPerson-t as
VDept-t (name Varchar (40)) mode db2sql;

create type VEmp-t under VPerson-t as
depr - (dept Ref (VDept-t)) mode db2sql;

a l t er type VDept-t
add attribute mgr Ref (VEmp-t) ;

In this example, the user creates three types: department, person, and employee. Each

department has a name and a manager. Each person is identified by a name. Finally, each

employee is a VPerson-t, which further has a (reference to a) particular department. While

the create type directives for VPerson-t and VEmp-t reflect the structure correctly, the

VDept-t type cannot be created with both of its required attributes. Clearly, the difficulty

arises as the VEmp-t type is not yet visible when VDept-t is created. The final a l ter type

directive remedies the situation in a roundabout fashion, adding the missing attribute.

4This example was pointed out to us by David Maier.

We see two opportunities with regard to our research. First of all, better syntactic

support (along the lines of our mdo-notation) would help get rid of the final alter type

directive, keeping the declaration of VDept-t self-contained, possibly simplifying further

analyses. More importantly, if such declarations are ever given a monadic semantics, value

recursion would be the right tool for modeling the cyclic dependency. Similar opportunities

exist in other languages as well.

On the theoretical side, we would like to see value recursion studied in a more abstract

setting. In this regard, the trace-fixed point correspondence, as we have studied in Chap-

ter 6, seems to be the right direction to proceed. We would like to investigate the reasons

why the axiomatization via traces turns out to be too strong, hopefully augmenting the

theory to capture the practical aspects more precisely. For instance, it would be inter-

esting to pin down the role of the right shrinking property precisely. As we have seen in

Chapter 3, right shrinking property is not satisfiable whenever the >> operator is strict

in its first argument, and hence a weakening of the trace-based axiomatizations seems

inevitable.

Several questions remain to be explored regarding the behavior of value recursion o p

erators. For instance, we lack a reasoning principle along the lines of fixed-point induction.

Recall that the fixed-point induction principle states that P (fix f) can be established by

showing that P I A Vd.(P d + P (f d)) holds, provided P is an admissible predicate.

(The obvious generalization: P I A Vd.(P d + P (d >> f)) =+ P (mjix f) is not sound,

as it implicitly assumes an unfolding view of value recursion.) It is probably the case that

one needs to formulate and prove a separate induction principle for each new mjix, rather

than looking for a universal principle that would work for all cases. While our properties

provide a framework for reasoning about terms involving mfix, such an induction principle

might prove essential for reasoning about value recursion in general.

Another question is the automatic construction of value recursion operators for ar-

bitrary monads. Although we have seen many "design patterns," it is still not clear

how to define an appropriate operator for a given monad that will satisfy our properties.

(The continuation monad seems to be the problem child in this regard.) Although it is

highly unlikely that a magic recipe for automatic construction of such operators exists, it

would be nice to pin down the exact conditions under which their existence (and possibly

uniqueness) can be guaranteed.

The semantics we have presented in Chapter 8 for modeling monadic 1/0 needs some

improvements to simplify reasoning with symbolic terms. Furthermore, we would like

to extend our language to support more features, such as concurrency and exceptions.

While concurrency seems relatively easy to support, it is not immediately clear how to

extend our system to include Haskell'98 style exceptions. More importantly, it would be

interesting to show that the addition of monadic 110 primitives, mutable variables, and

support for value recursion preserves the parametricity principle. Also, we would like to

design an accompanying abstract machine semantics, which might be useful as a basis for

constructing interpreters for similar languages.

Whether the mdo-notation should eventually replace the current do-notation in Haskell

is a question that will have to be answered by the Haskell community. While we believe

that a single construct should handle both recursive and non-recursive cases, such a change

potentially breaks existing programs, and it might be a better idea to make the switch in

a future version of Haskell.

Appendix A

Fixed-point operators

In this appendix, we briefly review fixed-point operators. Our aim is to introduce the

terminology we use, providing pointers to the literature for details as necessary.

In the domain theoretic semantics of programming languages, types are modeled by

domains and functions are modeled by continuous maps. The meaning of a typical recur-

sive declaration of the form let x = M in N is taken to be N p x (Xx.M)/x], where

assuming M has type a. Note that x need not be a function only, we might define recursive

values this way as well. For instance, we have (using Haskell-like notation):

let ones = 1 : ones in ones - - - fix (Xones. 1 : ones)

The least fixed-point theorem states that fia: f is the least fixed-point of f [76, 921.
That is, (i) it satisfies the fixed-point property: f (@ f) = fia: f , and (ii) it is the least

such value, i.e., for all x s.t. x = f x, we have fix f C x. We use the name Jia: only to

mean this particular fixed-point operator over domains.

The theory of fixed points is extensively studied [9, 10, 811. It is neither possible, nor

necessary for us to summarize this huge body of work here; we will simply state the results

that are most relevant to our work.

Property A.l (Dinaturality.) Let f :: a + P, g :: + a. The dinaturalityl property

of fix states that:

fix (f - 9) = f (fix (g . f))

 h he term dinaturality refers to the fact that j% can be viewed as a dinatural transformation between
certain functors [55, 801. We will not need this level of detail in our work, so we skip the details.

Property A.2 (BekiE.) Let f :: a x a + a. The BekiC property of fia: states that:

fia: (Ax. fix (XY- f (x, Y))) = Jia: (Ax. f (2, x))

Or, equivalently,

f;. (At. f;. (Xu. f (Tl t , n2 21))) = fix f

where f :: CY x p + a x P. It is easy to generalize to arbitrary number of variables, rather

than just two; see Winskel's textbook for details [92].2

In Chapter 6, we consider fixed-point operators in more abstract settings, i.e., without

assuming that the underlying structure is domains and continuous maps. We assume a

minimal acquaintance with category theory in the following discussion [2, 701. The basic

structure we work with is a category C with finite products. We write R for the terminal

object. The set of arrows between two objects A and B is denoted C(A, B). We will need

the following basic definitions [33, 791:

Definition A.3 A fixed-point operator is a family of functions (a); : C(A, A) + C(1, A),

such that for any f : A + A, f - f* = f*.

Definition A.4 A parameterkzed fixed-point operator is a family of functions:

satisfying:

Parameterized fixed-point property: For f : A x X + X, f - (idA, f t) = f t

Naturalityin A: For f : A x X + X a n d g : B + A , (f . (g x idx))t= f t . g .

Definition A.5 A Conway operator is a parameterized fixed-point operator that further

satisfies:

Dinaturality: For f : A x X + Y and g : A x Y + X, (9. (aftX, f))t = g - (ida, (f -
(rlA9Y 7 g)) t).

Diagonal property: For f : A x X x X + X , f tt = (f - id^ x (idx, idx))) t.

The reader need not master these definitions in full, only a basic familiarity is sufficient.

For the most part we will be working with fix, and using the dinaturality and BekiE

properties given before, which are much easier to read and understand.

2Beki~'s property appears in many different but equivalent forms in the literature [3]. The versions we
have given here are the ones that are most suitable for our purposes.

Appendix B

Proofs

In the following proofs, we assume true products. In the case of lifted products, special care

must be taken to ensure that the difference between (I, I) and I is not visible. The cases

when the distinction does matter have been pointed out in the text. (See Warning 2.6.7

as well.)

To save space, we will shorten return to q in our proofs. Also note that we use the name

map to refer to Haskell's fmap, i.e., map :: (a + ,B) + m a -+ m /3 for all monads m,

defined by the equation map f m = m >> q f.

B.l Proposition 2.5.2

Given Equation 2.7, establishing 2.8 is easy. We have:

mfix (Vx, -1. mfix (A(-, Y). f (x, Y)))
= mfi. (At. mfix (Xu. f (nl t , 7r2 u)))

= mf;x (At. mfix (Xu. (A(x, Y). f (TI 2, ~2 YY)) (t, u)))

= mfix (At. (X(x, 31). f (~ 1 x, n2 31)) (t, t))
= mjix (At. f (nl t, n2 t))

= m & f

{Equation 2.7)

In the last step, we used the fact that (nl t, 7r2 t) = t, which only holds for true products.

To show the correspondence in the other direction, let A x = (x, x), and note that A

is strict (again thanks to true products). We have:

mfia: (Ax. f (x, 2))
= mf;. (f - A)

= map (TI A) (mfix (f . A))

= map n1 (map A (mfix (f - A)))
= map n1 (mfi (map A . f))

{nl - A = id)

{slide)

= map TI (mfix (Ax. mfix (Xy. (map A . f) (a1 X , rn 9)))) {Equation 2.8)
= map a1 (mfix (Ax. mfix (map A (X Y . f (T I x , Y)) . ~ 2)))

= map .rrl (mfix (AX. map A (mfia: (X Y . f (a1 x7 Y))))) {slide)

= map a1 (mfix (map A - (Ax. m f i (Xy. f (x , y))) . T I))

= (map nl . map A) (mfix (AX. mfia: (X Y . f (x , Y)))) {slide)

= mfix (Ax. mfia: (X Y . f (x , Y)))

In case of lifted products (Proposition 2.5.4), the proof proceeds similarly. The last

step in the first proof is not applicable, but in that case we can replace the last Iine with

m f i (A - (x , y) . f (2 , y)) , which is predicted by Equation 2.10. The second implication

follows similarly.

B.2 Proposition 2.6.8

mfix (X(x7 9) . f x >> Xz. 77 (z , h 2 (x , Y)))
= mfix (At. (f - T I) t >> Xz. q (z , h z t))

= mf;. (At. (X(u, v) . (f . nl) u >> Xz. T,I (z , h z v)) (t , t))
= mfu (Ax. mfix (Xy. (f - al) x >> Xz. rl (z , h z y))) {nest)

= mfix (Ax. (f a1) x >=t X Z . mfix (Xy. q (z , h z y))) {left shrink}

= mfix (Ax. (f . T I) x >=t X Z . q Cf;x (Xy. (z , h z y)))) {purity 1
= mfix (Ax. (f T I) x >> X Z . q (z , fix (Xy. h z (z , 3)))) {nest (f i x))

= mf;. f >> Xz. q (2, fix (Xy. h z (z , y))) {pure right)

= mfix f >> Xz. q (f i (A (% , Y) . (2 , h z (2 , Y)))) {nest (f i x))

B.3 Proposition 2.7.1

mfix (4 x 7 -1. f x >+= X Y . 71 (9 , Y))

= mfix (map (X Y . (9 , Y)) . f - all

= map (X Y . (9 , Y)) (mfix (f . a1 - (X Y . (9 , Y)))) {strong sliding)

= map (X Y . (9 , Y)) (m f i (X Y . f 9))

= map (X I / - (9 , Y)) (f 9) {constant functions)

= f !I >=- X Y . rl (Q, Y)

The need for strong sliding is obvious, since otherwise we would have to require f q =

f I to satisfy the precedent.

B.4 Lemma 3.1.4

Recall that q is a natural transformation, that is, it satisfies the equality map h - q, =

q~ h for all h :: a + p. Assume q is strict at the type a, i.e., q, I, = I, ,, and >> is
strict in its first argument. Pick an arbitrary type P. We will show that qp IS = I m p :

7B IP
= qp (const la I,)
= (7)p - const I S) I,
= (map (const l a) . 7,) I,
= map (const I S) (q, I ,)
= map (const I p) I,,
= lm , >> q . const l.p

= I m p

{naturality of q)

{assumption: q, I, = I, ,)
{definition of map)
{assumption: >> is left-strict)

B.5 Proposition 3.4.2

Given arbitrary f and g, define:

We have:

mjix (Ax. f x @ g x)
= mfix (Ax. h x 1 @ h x 2)

= mfi (Ax. (q 1 >>c Ay. h x y) @ (q 2 >> Ay. h x y))

= mfix (Ax. (q 1 @ q 2) >> Ay. h x y) {Eqn. 3.8)

= (q 1 @ q 2) >>c AY. mf;: (AX. h x Y) {left shrink)

= mfi (Ax. h x 1) CB mfix (Ax. h x 2) {Eqn. 3.8)

=mfzxf @ m & g

B.6 Proposition 4.3.1

We consider each case in turn:

4.5: Right to left implication is immediate. F'rom left to right, fix (f - head) must be

I, which only happens when f l. = I . (Note that this establishes the strictness property.)

4.6: Similar to the previous case.

4.7: Simple case analysis. If mfix f is I , f is strict by 4.5, and both sides re-

duce to I. If mfi f is [], then f I = [] by 4.6, reducing both sides to I again.

Finally, if mfix f is a cons-cell, the case expression must take its second branch, i.e.,

head (mfia: f) = head (jix (f . head)), which is exactly the right hand side by the di-

naturality of fix.

4.8: Similar to the previous case, if mfix f equals I or [1, both sides yield I. Otherwise,

case must take its second branch, i.e., tail (mfix f) = mfia: (tail . f) .

4.9: Consider the test expression for case. We have:

f;. ((Ax. f x : g x) . head) = (Ax. f x : g x) (fi (head . (Ax. f x : g x)))

= (Ax. f x : 9 x) (f; f)
= f (f ix f) : g (f ix f)
= @ f : 9 (f ix f)

Hence, the case expression takes its second branch, yielding:

mfix (Ax. f x : g x) = jix f : mfix (tail - (Ax. f x : g x))

=jix f : m f i x g

4.10: We will use the approximation lemma [7, 381, which states that:

(Vn. approx n xs = approx n ys) + xs = ys

for arbitrary lists xs and ys. The function approx is defined as:

approx :: Integer -+ [a] + [a]
approx 0 xs = I
a p p r o x (n + l) l =I
approx (n+l) [I = [I
approx (n+l) (x:xs) = x : approx n xs

We will prove:

Vn.Vf,g. approx n (mfix (Ax. f x i+ g x)) = approx n (naf; f St mfiz g)

by induction on n, implying the required result. Base case (n = 0) is trivial. The induction

hypothesis is:

Vf ,g . approx k (mfix (Ax. f x +t g x)) = approx k (m@ f +I- mfix g) (B. l)

Note that the hypothesis is assumed for all f and g. This generality will be essential in

establishing the induction step. We need to show:

V f , g . approx (k+l) (mfix (Ax. f x i+ g x)) = approx (k+l) (mfix f St mfix g)

Pick two arbitrary functions f ' , g' :: a -+ [a]. It suffices to show that:

approx (k+ l) (mfix (Ax. f' x i+ g' x)) = approx (k+l) (mfix f' St mfix g') (B.2)

which we establish by case analysis on f' I. The cases I and [] are immediate. By 4.5

and 4.6, both sides reduce to I and approx (k + 1) (mfix g'), respectively. If f' I is a

cons-cell, it follows that

Vz. f' x = (head. f ') x : (tail . f ') x (B-3)

Simple inspection of the definition of mfix reveals that mfix f' must be a cons-cell in this

case as well. Hence, we have:

mf;. f' = head (mfi3: f ') : tail (mf;: f ') (B-4)

Therefore,

completing hhe proof.

approx (k+l) (mfix (Ax. f' x S f g' x))
= approx (k+l) (mfix (Ax. ((head . f ') x : (tail . f ') x) +t g' x)) {Eqn. B.3)

that the function mfixErrM satisfies strictness, purity and left shrinking

follow from the corresponding properties of mfixM, and simple sym-

will only present the left shrinking case to illustrate the technique.

to overloaded operators, we will write returnM and bandM for the

returnErrM and bindErrM for those of Err m.

= approx

= approx

= f;. (head

= f;. (head

= approx

= approx

= approx

(Ax. a 'bindErrM1 Ay. f x y)

4.36, expand bindErrM)

a 'bindErrMC Xy. f (unErr x) y)

Ay. case y of

Ok q + f (unErr x) q

Err s -, returnM (Err s))

(k+l) (mfia: (Ax. (head - f ') x : ((tail - f') x S f g' z)))

(k+l) (fix (head f ') : mfix (Ax. (tail . f ') x Sf g' x)) {Eqn. 4.9)

. f ') : (approx k (mfix (Ax. (tail - f ') x Sf g' x)))

. f ') : (approx k (mfix (tail . f ') +I- mfia: g ')) { I. H.)
(k+l) ((fia: (head . f ') : mfix (tail - f ')) +t- mfix g')

(k+l) ((head (mfia: f ') : tail (mfix f ')) -I+ m f i g') {Eqns. 4.7, 4.8)

(k+l) (mfix f' St mfix g') {Eqn. B.4)

= {left shrinking on mfixM)

a 'bindML Xy. mfixM (Ax. case y of

Ok q -+ f (unErr x) q
Err s -+ retumM (Err s))

= {Proposition 2.6.2, case is a shortcut for if)
a 'bindML Xy. case y of

Ok q + mfixM (Ax. f (unErr x) q)

Err s -+ mfixM (Ax. returnM (Err s))

= {fold down mifxErrM on the first branch, Proposition 2.6.1 on the second)

a 'bindML Xy. case y of

Ok q -+ mf;.ErrM (Ax. f x q)
Err s -+ returnM (Err s)

= {fold down bindErrM)

a 'bindEwM6 Xy. mf;.ErrM (Ax. f x y)

B.8 Proposition 6.3.5

We will need the following two lemmas:

Lemma B.8.1 Let T be a monad and m& be a value recursion operator satisfying the

right shrinking law. Let f : X + T (B x X) and g : B x X + T B'. Then,

mfix (A(-, x) . f x >> X Z . g z >> X W . q (w , 7r2 2))

= mf;. (A(- , x) . f x) >)E Xz. g z >> X W . 7 (w , 7r2 z)
Proof Note that the first mfix is at instance B' x X , while the second is at B x X . We

reason as follows:

mfix (A(-, x) . f x >t= Xz. g z >> Xw. q (w , 7r2 2))

= mfix (A(-, x) . f x >> Xz. g z >> X W . 7 (w , 2) >> X(p, q). 7 (P , 7r2 9))
= {slide, X(p, q). (p , 7r2 q) is strict)

mfix ((A(-, 4. f x >)r Xz. g z >)r Xw. q (w , 4) . (X (P , 9). (P , 7r2 9)))

>>- X (P , 9) . 7 (P , 7r2 9)

= mfix (A(-, t) . f (7r2 t) >)r Xz. g z >t= Xw. q (w, 2)) >t= X(p, q) . 7 (P , 7r2 9)

= {right shrinking)

mjix (A(-, x) . f x) >t= Xz. g z >t= Xw. q (w , 7r2 z)

The second lemma states a variant of Equation 3.7:

Lemma B.g.2 Let f :: a + m (P , T) , g :: T + m a, where m is a commutative monad.

Then,

m f i (At. g (n2 t) >> f) >> q - ni

= mfix (At. f (n2 t) >> At'. g (nz t ') >> Xa. q (wl t', a)) >> q . T I

provided mfix satisfies strong sliding and nesting.

Proof ($ketch) Note that the first mfix is at instance P x T , while the second one is

at p x a. {The proof first extends the recursion to a x (P x T) , applies commutativity

(Proposition 3.3.2), and then gets rid of the T argument.

To establish Proposition 6.3.5, we need to verify that the definition of trace as given

by 6.21 satisfies Equations 6.14- 6.20. We consider each case in turn:

Left tightening (6.14):

trace (X(a , x) . g a >> Xa'. f (a', x))

= Xa. mfix (X(b , x) . g a >> Xa'. f (a', 3)) >> q - ni
= {left shrinking on mf ix)

Xa. g a >> Xa'. mfix (X(b, x) . f (a', x)) >> q - ~1

= Xa. g a >> trace f

Right tightening (6.15):

trace (X (a , x) . f (a , x) >> X(b, x) . g b >> Xb'. q (b', x))

= Xa. mj% (X(b, x) . f (a , x) >% X(b, x) . g b >> Xb'. q (b', x)) >> q n1

= Xa. m& (X(b, x) . f (a , x) >> Xz.(g - T I) z >> Xb'. q (b', 7r2 z)) >>E q nl

= {lemma B.8.1)

Xa. mfix (X(b , x) . f (a , x)) >> Xz. (g - T I) z
= Xa. mfix (X(b , x) . f (a , x)) >> Xz. q (nl z) >> Xw. g w

= Xa. mfix (X(b, x) . f (a , x)) >> q . wl >t= g

= Xa. trace f a >> g

Sliding (6.16):

trace (X (a , x) . g x >> Ax'. f (a , x '))

= Xu. mfix (X(b , x) . g x >>c Ax'. f (a , x')) >> q - T I

= Xa. m f i (At. g (n2 t) >> curry f a) >> q ni

= {Lemma B.8.2)

Xa. mfix (At. curry f a (r2 t) >)C At'. g (7r2 t')

>> Ax'. q (r 1 t', 2 ')) >)C q - r1

= Xa. mfi (X(b, st). f (a , x') >> X(b, x) . g x

>> Ax'. q (b , x ')) >> q . rl
= trace (X(a , x'). f (a , x') >> X(b, x) . g x >)C Ax'. q (b , x '))

Vanishing (6.17):

trace (V a , 0). f a >% Xb. 7 (b , 0))
= Xa. mfix (X(b, 0). f a >)C Xb. q (b , 0)) >> q - ri
= {constant functions)

Xa. f a >> Xb. q (b , ()) >> q . ri
= Xa. f a >> Xb. b

= f

Vanishing (6.18): Let

Then ,

trace (trace (X ((a , 4, Y) . f (a , (x , Y)) >)e= X(b, (x , Y)) . 77 ((b , X I , Y)))
= trace (trace (At. f (iasc t) >> q asc))

= trace (trace (map asc - f . iasc))

= trace (X (a , x) . mfix (A((-, -), y). (map asc - f . iasc) ((a , x) , y))>> 77 - rl)

= trace (X (a , x) . mfia: (naap asc . (A((-, -), y). f (a , (x, y)))) >% q - T I)

= {slide, asc is strict)

trace (A(a , x) . mfix (A(-, (-, y)) . f (a , (x , y))) >> q - >* q . ~ 1)

= Xa. m f i (A(- , 2) . mfix (A(-, (-, y)) . f (a , (x , Y))) >> q - mi . a ~ c)
>)C q . r 1

= {slide, ~1 asc is strict)
Xa. mfix ((A(- , 2) . m f i (A(-, (-, Y)) . f (a , (x , Y)))) . rl asc)

>> q - (T I - T I asc)

= {rl - 7rl - asc = r l)

Xa. mfix (A(- , (2 , -1). mfix (A(-, (-, Y)) . f (a , (2 , ~ 1))) >+= 77 . r1
= {unnest triple)

Xa. mfix (A(- , (2, 9)) . f (a , ($ 7 Y))) 7;1 . T1

= trace f

Superposing (6.19): Let asc b e defined as above,

tmce (W c , a) , x) . f (a , 2) >> X(b, x) . q ((c , b) , x))

= X(cl a) . mfix (A((- , -), 3). f (a , x) >+= X(b, x). 7 ((c , b) , 3)) >> q . TI
= {slide}

X(c1 a) . m f i (A(-, (-7 4). f (a , 2) >+= X(b7 x) . 7 (c , (b , 4))
>> q "1 - asc

= {pure right shrinking)

X(c7 a) . mf;: (X(b1 4. f (a , 4) >2= X(b, 3). q (c , b)
= X(c, a) . mfix (X(b , x) . f (a , 3)) >> X(bl, x) . q b' >> Xb. q (c , b)

= X(c, a) . mfia: (X(b, x) . f (a , x)) >% q TI >> Xb. q (c , b)
= X(c, a) . trace f a >>I= Xb. q (c , b)

Yanking (6.20):

trace (A(a , a'). q (a', a))

= Aa. mf;: (X(b, a'). q (a', a)) >% q - TI

= {purity)

Aa. q (f ix (X(b , a'). (a', a))) >> q TI

= Xa. q (a , a) >=E 7 . xl

= 7)

Bibliography

(Each entry is followed by a list of page numbers on which the citation appears. All cited
URLs were last accessed in October 2002.)

[I] ACHTEN, P., AND PEYTON JONES, S. Porting the Clean Object 110 Library to
Haskell. In Proceedings of the 12th International Workshop on Implementation of
Functional Languages (2000), pp. 194-213. (98)

[2] BARR, M., AND WELLS, C. Category Theory for Computing Science, second ed.
Prentice Hall International Series in Computer Science. Prentice Hall, 1995. (10, 46,
68, 75, 141)

[3] BEKIC, H. Programming Languages and their Dejnition. Selected Papers, vol. 177
of Lecture Notes in Computer Science. Springer Verlag, 1984. (141)

 BENTON, ON, N., HUGHES, J., AND MOGGI, E. Monads and ef-
fects. Lecture notes from APPSEM'OO Summer School. URL:
wwu . disi . unige . it/person/MoggiE/APPSEMOO/BHM-revised. ps . gz, 2000. (10,
130)

[5] BENTON, N . , AND HYLAND, M. Traced premonoidal categories (Extended Abstract).
In Fixed Points in Computer Science Workshop, FICS'O2 (2002). (66, 79, 80, 81,
82, 83, 123, 135)

[6] BIRD, R. S. Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984), 239-250. (122)

[7] BIRD, R. S. Introduction to Functional Programming using Haskell, second ed. Pren-
tice Hall Europe, London, 1998. (10, 42, 47, 101, 145)

[8] BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH, S. Lava: Hardware design
in Haskell. In International Conference on Functional Programming (Baltimore, July
1998). (2)

[9] BLOOM, S. L., AND ESIK, Z. Fixed-point operations on cccls. Part I. Theoretical
Computer Science 155, 1 (1996), 1-38. (66, 140)

[lo] BLOOM, S. L., AND ESIK, Z. The equational logic of fixed points. Theoretical
Computer Science 179, 1-2 (1997), 1-60. (66, 140)

BIBLIOGRAPHY 152

[ll] CAREY, M. J . , CHAMBERLIN, D. D., NARAYANAN, S., VANCE, B., DOOLE, D.,
RIELAU, S., SWAGERMAN, R., AND MATTOS, N. M. 0-0, what have they done to
DB2? In VLDB799, Proceedings of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland, UK (1999), M . P. Atkinson, M. E.
Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds., Morgan Kaufmann,
pp. 542-553. (137)

[12] CLAESSEN, K. Embedded languages for describing and verifying hardware. PhD
thesis, Chalmers University of Technology, Goteborg, Sweden, 2001. (2, 4, 136)

[13] CLAESSEN, K., AND LJUNGLOF, P. Typed logical variables in Haskell. In Haskell
Workshop 2000 (2000). (132)

[14] CLAESSEN, K., AND SANDS, D. Observable sharing for functional circuit description.
In Asian Computing Science Conference (1999), pp. 62-73. (136)

[IS] CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. Introduction to Adgo-
ra'thms, second ed. The MIT Press, Cambridge, MA, 2001. (125)

[16] DE MOOR, 0. An exercise in polytypic program derivation: repmin. Unpublished
manuscript. URL: web. comlab .ox. ac . uk/oucl/work/oege . demoor/pubs . htm,
1996. (122)

[17] ERKOK, L., AND LAUNCHBURY, J . A recursive do for Haskell: Design and imple-
mentation. Tech. Rep. CSE-00-014, Oregon Graduate Institute School of Science and
Engineering, Department of CSE, OHSU, August 2000. (88, 95)

[18] ERKOK, L., AND LAUNCHBURY, J. Recursive monadic bindings. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP'OO (September 2000), ACM Press, pp. 174-185. (6, 125, 135)

[19] ERKOK, L., AND LAUNCHBURY, J. A recursive do for Haskell. In Haskell Work-
shop702, Pittsburgh, Pennsylvania, USA (Oct. 2002), ACM Press, pp. 29-37. (84)

[20] ERKOK, L., LAUNCHBURY, J., AND MORAN, A. Semantics of fixIO. In Fixed Points
in Computer Science Workshop, FICS'OI (September 2001). (90, 98, 121)

[21] ERKOK, L., LAUNCHBURY, J. , AND MORAN, A. Semantics of value recursion for
monadic input/output. Journal of Theoretical Informatics and Applications 36, 2
(2002), 155-180. (98)

[22] ESPINOSA, D. Semantic Lego. PhD thesis, Columbia University, 1995. (33, 58)

[23] FELLEISEN, M., AND HIEB, R. A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103, 2 (1992), 235-271. (104)

[24] FILINSKI, A. Representing monads. In Conference Record of POPL '94: 21ST ACM
SIGPLAN-SIGA CT Symposium on Principles of Programming Languages, Portland,
Oregon (New York, NY, 1994), pp. 446-457. (58)

BIBLIOGRAPHY 153

[25] FRIEDMAN, D., AND SABRY, A. Recursion is a Computational Effect. Tech. Rep.
TR546, Computer Science Department, Indiana University, Dec. 2000. (135)

[26] GHC web page. URL: wvu . haskell . org/ghc. (96)

[27] GORDON, A. D. Functional Programming and Input/Output. Distinguished Dis-
sertations in Computer Science. Cambridge University Press, Sept . 1994. (99, 112,
121)

[28] HALLGREN, T., AND CARLSSON, M. Programming with fudgets. In Advanced Func-
tional Programming (1995), vol. 925 of Lecture Notes in Computer Science, Springer.

(51)

[29] HALLGREN, T., AND CARLSSON, M. Fudgets - Pumly finctional Processes with
applications to Graphical User Interfaces. PhD thesis, Chalmers University of Tech-
nology, Goteborg, Sweden, 1998. (51, 136)

[30] HANKIN, C. Lambda Calculi: A Guide for Computer Scientists, vol. 3 of Graduate
Texts in Computer Science. Clarendon Press, Oxford, 1994. (10)

[31] HARPER, R., DUBA, B. F., AND MACQUEEN, D. B. Typing first-class continuations
in ML. Journal of Functional Programming 3, 4 (October 1993), 465-484. Also in
ACM POPL 91, pp. 163-173. (58, 62)

[32] HASEGAWA, M. Recursion from cyclic sharing: Traced monoidal categories and
models of cyclic lambda calculi. In Typed Lambda Calculus and Applicataons (1997),
pp. 196-213. (66, 71, 134)

[33] HASEGAWA, M. Models of Sharing Graphs, A categorical semantics of let and letrec.
Distinguished Dissertations in Computer Science. Springer Verlag, 1999. (66, 67, 68,
69, 70, 78, 134, 141)

[34] HUGHES, J. Global variables in Haskell. Draft paper. URL:
wvu. c s . chalmers . se/-rjmh/Globals .ps. (89)

[35] HUGHES, J. Why functional programming matters. Computer Journal 32, 2 (1989),
98-107. (10)

[36] HUGHES, J. Generalising monads to arrows. Science of Computer Programming 37,
1-3 (May 2000), 67-11 1. (79, 135)

[37] Hugs (Haskell Users Gofer System) web page. URL: wuw . haskell . org/hugs. (96)

[38] HUTTON, G., AND GIBBONS, J . The generic approximation lemma. Information
Processing Letters 79, 4 (2001), 197-201. (50, 145)

[39] JEFFREY, A. Premonoidal categories and a graphical view of programs. Unpublished
manuscript. URL: f p l . c s . depaul . edu/ajef frey/premon/paper . html, 1997. (79)

BIBLIOGRAPHY 154

[40] JONES, M. P. First-class polymorphism with type inference. In Proceedings of the
Twenty Fourth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL '97) (1997). (88)

[41] JONES, M. P. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell Workshop
(1999). (95, 101)

[42] JONES, M. P., AND DUPONCHEEL, L. Composing monads. Tech. Rep.
YALEU/DCS/RR-1004, Department of Computer Science, Yale University, Dec.
1993. (33, 49)

[43] JOYAL, A., STREET, R. H., AND VERITY, D. Traced monoidal categories. Math-
ematical Proceedings of the Cambridge Philosophical Society 119, 3 (1996), 447468.
(66, 68, 69, 70)

[44] KELSEY, R., CLINGER, W., AND REES, J. (Editors.) ~ e v i s e d ~ report on the algo-
rithmic language Scheme. ACM SIGPLAN Notices 33, 9 (Sept. 1998), 26-76. (58,
63)

[45] KING, D. J., AND LAUNCHBURY, J. Structuring depth-first search algorithms in
Haskell. In Conference Record of POPL '95: 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1995), pp. 344-354. (130)

[46] KING, D. J. , AND WADLER, P. Combining monads. In Glasgow Workshop on
Functional Programming (Ayr, July 1992), J. Launchbury and P. M. Sansom, Eds.,
Springer Verlag. (28)

[47] LAUNCHBURY, J. Lazy imperative programming. In Proceedings of the ACM SIG-
PLAN Workshop on State in Programming Languages, Copenhagen, DK, SIPL '92
(1993), pp. 46-56. (2)

[48] LAUNCHBURY, J. A natural semantics for lazy evaluation. In Conference record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Charleston, South Carolina (1993), pp. 144-154. (99, 108,
109)

[49] LAUNCHBURY, J., LEWIS, J., AND COOK, B. On embedding a microarchitectural
design language within Haskell. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP '99) (1999), pp. 60-69. (2, 4, 85)

[50] LAUNCHBURY, J., AND PATERSON, R. Parametricity and unboxing with unpointed
types. In European Symposium of Programming (Apr. 1996), vol. 1058 of Lecture
Notes in Computer Science, Springer, pp. 204-218. (10, 20)

[51] LAUNCHBURY, J., AND PEYTON JONES, S. L. Lazy functional state threads. ACM
SIGPLAN Notices 29, 6 (June 1994), 24-35. (42)

[52] LAUNCHBURY, J., AND PEYTON JONES, S. L. State in Haskell. Lisp and Symbolic
Computation 8, 4 (Dec. 1995), 293-341. (42, 121, 128)

BIBLIOGRAPHY 155

[53] LIANG, S. Modular Monadic Semantics and Compilation. PhD thesis, Yale Univer-
sity, 1998. (1, 31, 33, 53, 54, 55, 61)

[54] LIANG, S., HUDAK, P., AND JONES, M. P . Monad transformers and modular
interpreters. In Conference record of POPL '95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: Sun Francisco, California,
January 22-25, 1995 (1995), ACM, Ed., ACM Press, pp. 333-343. (33)

[55] MACLANE, S. Categories for the Working Mathematician, second ed., vol. 5 of
Graduate Texts in Mathematics. Springer Verlag, 1997. (10, 28, 68, 74, 140)

[56] MARLOW, S., PEYTON JONES, S. L., MORAN, A., AND REPPY, J. Asynchronous
exceptions in Haskell. In ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation (PLDI) (Snowbird, Utah, June 20-22 2001). (121)

[57] MASON, I. A., AND TALCOTT, C. L. Equivalence in functional languages with
effects. Journal of Functional Programming 1, 3 (1991), 287-327. (112)

[58] MATTHEWS, J. Algebraic Specification and Verification of Processor Microarchitec-
tures. PhD thesis, Oregon Graduate Institute of Science and Technology, Portland,
Oregon, 2000. (2)

[59] MATTHEWS, J., COOK, B., AND LAUNCHBURY, J. Microprocessor specification in
Hawk. In Proceedings of the 1998 International Conference on Computer Languages
(1998), IEEE Computer Society Press, pp. 90-101. (2)

[60] MEIJER, E., FOKKINGA, M., AND PATERSON, R. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proceedings 5th ACM Conf. on Func-
tional Programming Languages and Computer Architecture, FPCA '91, Cambridge,
MA, USA, 26-30 Aug 1991, J. Hughes, Ed., vol. 523 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1991, pp. 124-144. (20)

[61] MILNER, R. Comrraunicating and Mobile Systems: The T-Calculus. Cambridge Uni-
versity Press, May 1999. (99, 121)

[62] MOGGI, E. An abstract view of programming languages. Tech. Rep. ECS-LFCS-90-
113, Dept. of Computer Science, Edinburgh Univ., 1990. (1)

[63] MOGGI, E. Notions of computation and monads. Information and Computation 93,
1 (1991). (1, 8, 10, 67)

[64] MOSSES, P. D. Semantics, modularity, and rewriting logic. In Electronic Notes in
Theoretical Computer Science (2000), C. Kirchner and H. Kirchner, Eds., vol. 15,
Elsevier Science Publishers. (1)

[65] NORDLANDER, J. Reactive Objects and Functional Programming. PhD thesis,
Chalmers University of Technology, Goteborg, Sweden, 1999. (96, 130, 136)

BIBLIOGRAPHY 156

[66] PATERSON, R. A new notation for arrows. In Proceedings of the Sixth ACM SIG-
PLAN International Conference on Functional Programming, ICFP'OI, Florence,
Italy (September 2001), ACM Press, pp. 229-240. (66, 79, 80, 83, 96, 135)

[67] PEYTON JONES, S. L. Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. In Engineering theories
of software construction (2001), T. Hoare, M. Broy, and R. Steinbruggen, Eds., IOS
Press, pp. 47-96. (98, 99, 108, 121)

[68] PEYTON JONES, S. L., AND HUGHES, J . (Editors.) Report on the programming
language Haskell 98, a non-strict purely-functional programming language. URL:
www.haskell.org/onlinereport, Feb. 1999. (2, 10, 14, 20, 30, 86, 87, 89, 95, 98,
101, 101)

[69] PEYTON JONES, S. L., AND WADLER, P . Imperative functional programming. In
Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Charleston, South Carolina (1993), pp. 71-84.
(2, 98)

[70] PIERCE, B. C . Basic Category Theory for Computer Scientists. MIT Press, Cam-
bridge, MA, 1991. (141)

[71] PITTS, A. M. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10 (2000), 321-359. (112, 121)

[72] POWER, J., AND ROBINSON, E. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science 7, 5 (1997), 453-468. (81)

[73] POWER, J., AND THIELECKE, H. Closed Freyd- and &-categories. In Automata,
Languages and Programming (1999), pp. 625-634. (79, 82)

[74] Recursive monadic bindings web Page.
uuw. cse .ogi .edu/PacSoft/projects/rmb. (96)

URL:

[75] REYNOLDS, J. C. Types, abstraction, and parametric polymorphism. In Information
Processing'83, R. Mason, Ed. North-Holland, Amsterdam, 1983, pp. 513-523. (10,
20)

[76] REYNOLDS, J. C. Theories of Programming Languages. Cambridge University Press,
1998. (1, 10, 12, 140)

[77] SCHMIDT, D. A. Denotational Semantics. Allyn and Bacon, Boston, 1986. (1, 10,
32)

[78] SESTOFT, P. Deriving a lazy abstract machine. Journal of Functional Programming
7, 3 (1997), 231-264. (109)

[79] SIMPSON, A., AND PLOTKIN, G. Complete axioms for categorical fixed-point opera-
tors. In Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer
Science (2000), pp. 30-41. (20, 66, 141)

BIBLIOGRAPHY 157

[80] SIMPSON, A. K. A characterisation of the least-fixed-point operator by dinaturality.
Theoretical Computer Science 11 8, 2 (1993), 301-314. (140)

[81] SMYTH, M., AND PLOTKIN, G . The category-theoretic solution to recursive domain
equations, 1982. (140)

[82] STOY, J . E. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. M I T Press, Cambridge, Massachusetts, 1977. (1, 10, 20)

[83] TENNENT, R. D. Semantics of Programming Languages. Prentice Hall, New York,
1991. (1, 10, 12)

[84] THIELECKE, H. Using a continuation twice and its implications for the expressive
power of cal l /cc. Higher-Order and Symbolic Computation 12, 1 (1999), 47-74. (58,

62)

[85] THIEMANN, P. WASHICGI: Server-side web scripting with sessions.
compositional forms, and graphics. Unpublished manuscript. URL:
w. inf ormatik .mi - f reiburg . de/-thiemandpapers, Mar. 2001. (127)

[86] TURBAK, F., AND WELLS, J . B. Cycle therapy: A prescription for fold and unfold on
regular trees. In Proc. 3rd Int71 Conf. Principles tY Practice Declarative Programming,
PPDP701 (Sept. 2001). (137)

[87] TURNER, D. A. A new implementation technique for applicative languages. Software
Practice and Experience 9, 1 (Jan. 1979), 31-49. (10)

[88] WADLER, P. Theorems for free! In FPCA'89, London, England. ACM Press, Sept.
1989, pp. 347-359. (10, 20)

[89] WADLER, P . Comprehending Monads. In LISP790, Nice, France. ACM Press, 1990,
pp. 61-78. (2, 31, 125)

[go] WADLER, P. Monads and composable continuations. Lisp and Symbolic Computation
7, 1 (Jan. 1994), 39-56. (58)

[91] WADLER, P . Monads for functional programming. In Advanced Functional Program-
ming, J . Jeuring and E. Meijer, Eds., vol. 925 of Lecture Notes in Computer Science.
Springer Verlag, 1995. (2, 10, 42, 47)

[92] WINSKEL, G. The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing series. MIT Press, Feb. 1993. (140, 141)

[93] WRIGHT, A. K. Simple imperative polymorphism. Lisp and Symbolic Computation
8, 4 (1995), 343-355. (95, 96)

INDEX

Index

Achten, P., 98
additive monad, 25, 30

list, 30
maybe, 30

arrows, 79, 96, 135, 136

BekiE property, 15, 16, 141
Benton, N., 66, 79-81, 83, 123, 130,

135
black hole, 102, 107-109, 113

Carlsson, M., 51, 61, 136
category

ccc, 73
Freyd, 79, 82
Kleisli, 67, 72, 73, 75, 81
premonoidal, 81, 82, 135
symmetric monoidal, 68, 72, 75,
134

symmetric premonoidal, 81
traced symmetric monoidal, 69
traced symmetric premonoidal, 82

Claessen, K., 4, 132, 136
commutative monad, 15, 72, 74, 134
commutativity, 25, 29

environment, 49
identity, 36
maybe, 37

continuation, 58, 138
callcc, 59, 62, 63
CPS, 58
first-class, 58, 62-65

continuity, 18, 78

derivation, 112
effect of, 112
silent, 114

dinaturality, 14, 140
distributivity, 30

list, 41
maybe, 38

environment monad, 28, 31, 48, 49,
57, 73, 83, 127

commutativity, 49
embedding into state, 49
idempotency, 49
left shrinking, 49
nesting, 49
purity, 49
right shrinking, 49
strictness, 49
strong sliding, 49

Espinosa, D., 58
execution context, 104

empty, 104

Filinski, A., 65
fixI0, 90, 98-100, 113, 118, 123
free theorem, 20
Friedman, D., 135
fudget monad, 51, 100

left shrinking, 53
nesting, 53
purity, 53
right shrinking, 53
sliding, 53
strictness, 53
strong sliding, 53

Gordon, A. D., 99

Hallgren, T., 51, 136
Hasegawa, M., 66, 68-70, 78, 134
heap, 102

slice, 103
Hughes, J., 79, 89, 130, 131
Hyland, M., 66, 70, 79-81, 83, 123,

135

INDEX

idempotency, 25, 28
environment, 49
identity, 36
maybe, 37

identity monad, 28, 31, 35, 49, 57, 61,
83

commutativity, 36
idempotency, 36
left shrinking, 35
nesting, 36
purity, 35
right shrinking, 36
strictness, 35
strong sliding, 36

injection, 21
input stream, 102

empty, 103
I 0 monad, 9, 25, 27, 51, 83, 90, 98,

99, 123
1, 114
left shrinking, 120
nesting, 121
purity, 119
right shrinking, 27, 121
sliding, 121
strictness, 118
strong sliding, 121

Jeffrey, A., 79
Joyal, A., 66, 68

Launchbury, J., 4, 85, 99, 108, 109,
121

left shrinking, 14, 17, 18, 23, 24, 30,
31, 94, 99, 120

continuations, 63
environment, 49
fudgets, 53
10, 120
list, 40
maybe, 37
output, 48
state, 45
tree, 50

Liang, S., 53

list monad, 9, 25, 27, 30, 31, 38, 50,
83, 124
distributivity, 41
left shrinking, 40, 125
nesting, 41
purity, 40
right shrinking, 27, 41
sliding, 41
strictness, 40
strong sliding, 41

Ljunglof, P., 132
logical variables, 130

Maier, D., 137
maybe monad, 9, 25, 27, 28, 30, 31,

36, 54, 83
commutativity, 37
distributivity, 38
idempotency, 37
left shrinking, 37
nesting, 37
purity, 37
right shrinking, 27, 37
strictness, 37
strong sliding, 37

md+notation, 8, 86, 136
defined variables, 91
dependent generators, 91
let bindings, 87
MonadFix class, 7, 95, 97
naive translation, 8, 86
recursive variables, 91
segmentation, 89
segments, 92
shadowing, 90
type checking, 95
used variables, 91

mirror image (of a property), 21
Moggi,E., 1,2, 8, 10, 130
monad embedding, 31

environment into state, 49
identity into any other, 36
maybe into list, 32, 41
output into state, 47

monad homomorphism, 31

INDEX

monad transformers, 33, 53
continuations, 34, 53, 61, 131
environments, 34, 54
error, 34, 53
state, 34, 55

monoid, 46, 75
commutative, 72, 75
representation monad, 46

monotonicity, 18

nesting, 15
environment, 49
fudgets, 53
10, 121
list, 41
maybe, 37
output, 48
state, 45
tree, 51

Nordlander, J., 96, 130, 136

output monad, 31, 46, 126
embedding into state, 47
left shrinking, 48
nesting, 48
pure right shrinking, 48
purity, 48
right shrinking, 48
strictness, 48

parametricity, 10, 139
of mfix, 20
of the I 0 language, 121

Paterson, R., 15, 26, 66, 79, 80, 83,
96, 135

Peyton Jones, S. L., 98, 99, 108, 121
Pitts, A. M., 121
Plotkin, G. D., 20
Power, J., 79, 81
program state, 103

closed, 104
divergent, 1 12
normal, 112
stuck, 112
terminal, 104, 112

type of, 104
pure right shrinking, 18
purity, 13, 17, 18, 23, 24, 31, 80, 99,

119
continuations, 60
environment, 49
fudgets, 53
10, 119
list, 40
maybe, 37
output, 48
state, 45
tree, 50

right shrinking, 22, 25, 27, 86, 87, 90
environment, 49
fudgets, 53
10, 121
list, 41
maybe, 37
output, 48
state, 46
tree, 51

Robinson, J., 81

Sabry, A., 62, 135
Sands, D., 136
scope change, 19, 23
segment, 92

exported variables, 92
free variables, 92
recursive, 93

Sestoft, P., 109
Simpson, A., 20
state monad, 9, 27, 31, 42, 83

left shrinking, 45
nesting, 45
purity, 45
right shrinking, 27, 46
sliding, 45
strictness, 44
strong sliding, 46

strictness, 12, 18, 23, 24, 31, 118
environment, 49
fudgets, 53

INDEX

10, 118
list, 40
maybe, 37
output, 48
state, 44
tree, 50

strong sliding, 22, 25-27
environment, 49
fudgets, 53
10, 121
list, 41
maybe, 37
state, 45, 46
tree, 51

term, 101
10, 102, 113
pure, 102, 104, 113
state, 103

Thielecke, H., 58, 62, 79
Thiemann, P., 16, 127
tree monad, 49

left shrinking, 50
nesting, 51
purity, 50
right shrinking, 51
sliding, 51
strictness, 50
strong sliding, 51

Turbak, F., 137

uniformity, 20

Wadler, P., 2, 58, 98
Wells, J. B., 137

Biographical Note

Levent Erki5k was born in 1972, Merzifon, Turkey. He received a B.S. degree in Computer

Engineering from the Middle East Technical University in Ankara, Turkey, in 1994, and

an M.S. degree in Computer Science from the University of Texas at Austin in 1998.

He started his Ph.D. studies at Oregon Graduate Institute later that year. His research

interests lie in the theory of programming languages, especially the functional paradigm.

