August 1990

Key words in context, an example

James Hook

Richard Kieburtz

Follow this and additional works at: http://digitalcommons.ohsu.edu/csetech

Recommended Citation
Hook, James and Kieburtz, Richard, "Key words in context, an example" (1990). CSETech. 212.
http://digitalcommons.ohsu.edu/csetech/212
Key Words in Context, an example

James Hook and Richard Kieburtz

Oregon Graduate Institute
Department of Computer Science
and Engineering
19600 N.W. von Neumann Drive
Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 90-012

August, 1990
Key Words in Context, an example

James Hook and Richard Kieburz
Oregon Graduate Institute
hook@cse.ogi.edu

July 27, 1990

Abstract

This report presents the derivation of the "key words in context" example in the Extended ML framework of Sannella and Tarlecki [6, 7, 5, 8, 4, 9]. Experiences with the derivation are discussed.

1 Introduction

The production of verifiably correct programs without sacrifice of performance in execution has been a goal of computer scientists for years. Several methods for deriving programs from specifications have been proposed over the years, but few have demonstrated the capacity to scale up to realistic examples.

Specifications have generally followed one of two paradigms. A logical specification expresses logical relations over quantified object variables. The behavior entailed by a logical specification is inferred by constructing a realization if this is not manifest. Both first-order and higher-order logics have been used for specification. In principle, logics provide the means for composition of specifications, but this has not been very extensively developed linguistically. Composition of specifications seems clumsy in most logics.

An algebraic specification defines the operators of a many-sorted algebra, typically by imposing an equational theory. A carrier set for the algebra is usually not specified. In an algebraic specification, the behavior is manifest, but logical relations must be inferred in order to prove general properties. Algebraic composition is a natural and useful technique, but in a purely first-order algebraic system, new composition operators cannot themselves be specified.

Sannella and Tarlecki, building on extensive experience in algebraic specification languages, have recently developed Extended ML, a method for deriving ML programs that appears to provide sufficient tools for composition of component specifications to overcome the scaling problems. The method of developing a specification by refinement is still being fleshed out. This paper presents a non-trivial example developed according to their method. We offer comments on how this process might be automated and what demands it places on the logic.

In reviewing the text of this paper we have noticed, to our consternation, that the volume of words and symbols generated is at the verge of overwhelming the reader. The reader of
a specification must be able to concentrate his/her attention on specific details of concern. Having the visual field cluttered with text that dilutes the density of information content is distracting. There are several ways to mitigate this problem. (1) Some parts of component specifications are repeated many times in the linear text of the paper because they occur in several contexts. If one were reading the specification from the screen of a workstation, particularly one utilizing a hypertext-like environment, the duplications would be less distracting. (2) The text of specifications suffers from the wordiness of a programming notation. It would be easier to digest if it appeared in more familiar mathematical notation with abbreviated names and special symbols for operators such as universal quantification. Setting the text of axioms in an italic font in 'math mode' format would help to distinguish them from the declarations that appear in a signature. (3) At some points in the example, coercion functions are used to resolve otherwise overloaded operator names. Overloaded operator names are commonly used in mathematics, and a convention that permitted such overloading would be a boon to the readability of specifications.

In evaluating the specification language and methods we have used in this paper, the reader should also keep in mind that were a similar problem done in practice, the software designer would expect to have at his/her disposal libraries of existing module specifications and implementations. We have given everything needed for our example as if it were all created at one time, without benefit of an archive of prior work. Note that the module structure of the SML (and EML) language caters explicitly for the use of libraries by providing the interface structure and modes of composition that are needed. When this structure is superimposed on a modest example in which library modules are not used, it may appear cumbersome, but in practice it saves time and effort.

The example is not yet as complete as we would like. Specifically, it does not deal with I/O or display, character sets or fonts, or programmed exceptions. These can all be specified in EML and will be given in a future edition of this example.

1.1 Problem statement

The application we consider is one that has been used many times as an example. It is to generate, from a list of one-sentence titles, a list of permutations of the titles sorted by the occurrence of so-called key words. This is called a Key Words in Context (kwic) index.

More specifically, we require a sorted list of cyclic permutations of the original titles such that (1) each original title appears, (2) only those permutations appear that begin with a key word, and (3) only distinct titles and permutations appear in the output. A key word is any word that has not been explicitly noted as insignificant.

2 Specifying the problem

The Extended ML (EML) framework augments Standard ML's (SML) module declarations, a substructure intended to support programming in the large, to a calculus for specification and refinement. It generalizes the structures (large values) and signatures (large types) of
SML to include axiom declarations[3, 1, 2]. In the case of signatures, these axioms are viewed as specifications. In the case of structures they constrain the space of models in a manner consistent with the specification. Axioms are of use in structures during intermediate stages of the refinement process—once the structure is fully implemented with ML values there should be only one model. Extended ML also supports Standard ML’s large functions—functors. This treatment is simply an extension of the treatment of structures to a parametric setting.

The Extended ML framework may be used with almost any logic. In the core of this development we use a first-order logic with equality, similar to that used in Sannella and Tarlecki[6]. Although EML is not implemented, this code does typecheck and run in Standard ML with the EML specific constructions commented out.

In our research we hope to develop a suite of related logics that can cope with richer subsets than the first-order logic in the main example. This would allow, among other things, the extension of the example to include its input-output specification. It would also support formal justification of the exploitation of higher-order functions used in section 3.1.

2.1 KWIC specification

To proceed from the informal problem description given above to a specification, we need to make many of the ideas more precise. We begin by typing the main function:

```ml
val kwic : string list list -> string list -> string list list
```

To express the ensemble of properties in the specification we will need:

1. a Total_Order structure, ordered_words, that captures the ordering of words,
2. a Sorted_Total_Order structure, ordered_titles, that encodes the ordering on titles,
3. a Rotation structure on titles, permuted_titles, that describes significant rotations, and
4. a Repetition_Free_List structure on titles, unique_titles, that describes the final output.

Given these structures we will develop axioms that specify:

1. ordered_words is a lexicographic ordering derived from the ASCII character code.
2. ordered_titles is a lexicographic ordering derived from ordered_words.
3. The output is sorted by the ordered_titles ordering and made unique by the unique_titles filter.
4. The output contains exactly the significant rotations (as defined in permuted_titles) of the input.
2.2 Supporting Concepts

To make our specification precise we need to build up a library of supporting concept specifications. These are the algebras of basic mathematical notions. In an EML specification, the operators of these algebras are expressed as programmed functions.

2.2.1 Order relations

One of the simplest component specifications in the system is that of an equivalence relation. It is expressed:

```plaintext
signature Equiv_Rel =
  sig
    type elem
    val eq : elem -> elem -> bool
    axiom (all x: elem. eq x x = true)
      and (all x,y:elem. eq x y = eq y x)
      and (all x,y,z:elem. eq x y and eq y z => eq x z)
  end;
```

This introduces a signature named Equiv_Rel and binds it to the signature that has a type called elem, an operation called eq, and three familiar axioms characterizing eq as an equivalence relation. In a nicer syntax these axioms appear as:

\[
\forall x : elem. x \sim x \\
\forall x, y : elem. x \sim y = y \sim x \\
\forall x, y, z : elem. x \sim y \land y \sim z \Rightarrow x \sim z
\]

Where \(\sim\) represents eq.

Total orders may be defined by incremental development on this basis, using the include signature construction operator. We extend equivalence relations to partial orders and partial orders to total orders as follows:
signature Partial_Order =
 sig
 include Equiv_Rel
 val less : elem -> elem -> bool
 axiom (all x: elem . less x x = false)
 and (all x,y: elem . less x y => not less y x)
 and (all x,y,z: elem . less x y and less y z => less x z)
 end;

Which augments the equivalence relation axioms with:

\[
\forall x : \text{elem} . x \not\sim x \\
\forall z, y : \text{elem} . x \sqsubseteq y \rightarrow y \not\sqsubseteq x \\
\forall z, y, x : \text{elem} . x \sqsubseteq y \land y \sqsubseteq z \rightarrow x \sqsubseteq z
\]

Where we have used \(\sqsubseteq\) for less. This is followed by the definition:

signature Total_Order =
 sig
 include Partial_Order
 axiom (all x,y : elem . less x y orelse less y x orelse eq x y)
 end;

which adds the restriction that \(\forall x, y : \text{elem} . x \sqsubseteq y \lor y \sqsubseteq x \lor x \sim y\).

The reason we need total orders in this exercise is to produce a sorted list of output. Sorting is expressed by the following specification:

signature Sorted_Total_Order =
 sig
 include Total_Order

 val ordered : elem list -> bool
 axiom (all l:elem list.
 (all u,v:elem list.
 all x,y:elem. 1 = u@[x]@[y]@[v] => less x y orelse eq x y)
 <=> ordered l)

 val permutation : elem list -> elem list -> bool
 axiom (permutation [] [] = true)
 and (all l,u,v:elem list.
 all x:elem. permutation (x::l) (u@[x]@[v]) =
 permutation l (u@[v]))

 val sort : elem list -> elem list

axiom (all 1, u: elem list.
 l = sort u => (permutation l u andalso ordered l)
end;

The first axiom:

\[\forall l : elem\ list. (\forall u, v : elem\ list. \forall x, y : elem. l = u@\{x\}@\{y\}@v \rightarrow x \subseteq y) \leftrightarrow ordered\ l \]

characterizes the meaning of ordered. The next two express permutations. Finally, a sort is characterized as an ordered permutation of the input.

2.2.2 Rotations

A list \(r \) is a rotation of a list \(l \) if \(r \) can be decomposed into two lists \(u \) and \(v \) such that \(r = uv \) and \(l = vu \). A rotation is trivial if either \(u \) or \(v \) is the empty string. A rotation is significant with respect to a predicate \(s \) if it is trivial or \(s(hd\ r) \).

The formulation below focuses on the function \texttt{significant_rotations} which expects a significance predicate and a title and returns the list of all significant rotations of the title. This specification is captured in the signature:

signature Sig_Rotation =
 sig
 type elem

 val significant_rotations : (elem -> bool) -> elem list -> elem list list

 val rotation : elem list -> elem list -> bool
 val significant : (elem -> bool) -> elem list -> elem list -> bool

axiom (all l, u, v: elem list.
 l = u@v => rotation l (v@u))

and (all l, r: elem list.
 rotation l r => exists u, v: elem list.
 u@v = l andalso v@u = r)

and (all sig_pred: elem -> bool.
all l, r: elem list.
 significant sig_pred l r
<=> l = r orelse
 (rotation l r andalso sig_pred (hd r)))
and (all sig_pred: elem -> bool.
 all l, r: elem list.
 significant sig_pred l r
 <=> r is_in significant_rotation sig_pred l)
end;

2.2.3 Sets

Since the significance predicate is going to be applied repeatedly, we choose to introduce a set abstraction for collections of insignificant words to support its implementation. This will allow us to easily change the module as more efficient implementations are required.

The EML signature for sets is:

signature Set =
 sig type elem
 type set
 val empty : set
 val is_member : elem -> set -> bool
 val insert : elem -> set -> set
 val list_members : set -> elem list
 axiom (all x: elem. is_member x empty = false)
 and (all x,y: elem.
 all s: set. (x=y) is_member x (insert y s) = true)
 and (all x,y: elem.
 all s: set. not (x=y) is_member x (insert y s) = is_member x s)
 and (all x: elem.
 all s: set. x is_in list_member s <=> is_member x s)
end;

2.2.4 Repetition free lists

Finally, to delete repetitions from the output, we specify lists without repetitions:

signature Repetition_Free_List =
 sig include Equiv_Rel
 val repetition_free: elem list -> bool
 axiom all l:elem list.
 repetition_free l <=>
 (all u,v: elem list,
 all x,y: elem.
 l = u@[x,y]@[v => not eq x y])

 val remove_repetitions: elem list -> elem list

axiom all l: elem list.
 repetition_free (remove_repetitions l)

axiom all l:elem list, x:elem.
 x is_in l <=> x is_in remove_repetitions l

axiom all u,v,w: elem list, x,y:elem.
 not eq x y =>
 exists u',v',w': elem list.
 u'@x@v@y@w' =
 remove_repetitions (u@x@v@y@w)

end

2.3 Sharing declarations

To integrate the specification it is necessary to relate the component structures to each other formally. In SML this is done with sharing declarations. Without an explicit sharing declaration, each occurrence of a type or structure declaration is taken to be distinct, even from another occurrence that is textually identical. In the ML nomenclature, this is called the generative property of declarations.

Standard ML (and EML) supports two sorts of sharing: type sharing and structure sharing. Either sort defines equivalences of names. Unfortunately, name equivalence is not rich enough to express the relationships in our example. Consider the relationship between ordered_words and ordered_titles. What we want to specify is:

sharing type ordered_titles elem = ordered_words.elem list

But the right hand side of this sharing specification is a type expression—not a name.

To accommodate to this restriction we shall augment the basic order types and order type functors by identifying derived structures and including in them the structure from which they are derived. To this end we define Derived_Total_Order and Derived_Sorted_Total_Order as:

signature Derived_Total_Order =
 sig
 include Total_Order
 structure elem_order:Total_Order
 end

 val elem_to_list: elem -> elem_order.elem list
 and list_to_elem: elem_order.elem list -> elem
 axiom (all x:elem. x = list_to_elem (elem_to_list x))
 and (all l:elem_order.elem list. l = elem_to_list(list_to_elem l))
axiom (all y: elem_order.elem.
 all 1: elem. less (list_to_elem [])
 (list_to_elem (y::(elem_to_list 1))) = true)

and (all x,y: elem_order.elem.
 all xs,ys: elem.
 less (list_to_elem (x::(elem_to_list xs)))
 (list_to_elem (y::(elem_to_list ys))) =
 elem_order.less x y
 orelse elem_order.eq x y
 andalso less xs ys)

and (all 1:elem. less 1 (list_to_elem []) = false)
end;

signature Sorted_Derived_Total_Order =
 sig
 include Sorted_Total_Order
 structure elem_order:Total_Order
 val elem_to_list: elem -> elem_order.elem list
 and list_to_elem: elem_order.elem list -> elem
 axiom (all x:elem. x = list_to_elem (elem_to_list x))
 and (all 1:elem_order.elem list. 1 = elem_to_list(list_to_elem 1))

axiom (all y: elem_order.elem.
 all 1: elem. less (list_to_elem [])
 (list_to_elem (y::(elem_to_list 1)))
 = true)

and (all x,y: elem_order.elem.
 all xs,ys: elem.
 less (list_to_elem (x::(elem_to_list xs)))
 (list_to_elem (y::(elem_to_list ys))) =
 elem_order.less x y
 orelse elem_order.eq x y
 andalso less xs ys)

and (all 1:elem. less 1 (list_to_elem []) = false)
end;

With these changes it is possible to express the relationship between the Total_Order
ordered_words and the Sorted_Derived_Total_Order ordered_titles with the structure
sharing constraint:

 sharing ordered_titles.elem_order = ordered_words

With these details completed, the specification can now be given in full.
signature KWIC_specification =
 sig
 structure ordered_words: Total_Order
 sharing type ordered_words.elem = string
 structure ordered_titles: Sorted_Derived_Total_Order
 sharing ordered_titles.elem_order = ordered_words
 structure permuted_titles: Sig_Rotation
 sharing type permuted_titles.elem = string
 structure unique_titles: Repetition_Free_List
 sharing type ordered_titles.elem = unique_titles.elem
 val kwic : string list list -> string list -> string list list

axiom (all c: string ordered_words.less c "" = false)
and (all c: string.
 all l: string list.
 (length (explode c) = 1) =>
 (ordered_words.less "" (implode (c::l)) = true))
and (all s,t:string.
 all x,y:string.
 all xs,ys: string list.
 ((explode s) = x::xs
 andalso (explode t) = y::ys)
 => ordered_words.less s t
 = (x < y) orelse (x = y)
 andalso ordered_words.less (implode xs)
 (implode ys)
and (all titles: string list list.
 all insignificant_words: string list.
 let val output = kwic titles insignificant_words
 in
 ordered_titles.sorted output
 andalso unique_titles.repetition_free output
 end)
and (all titles: string list list.
 all insignificant_words: string list.
 all y: string list.
 y is_in kwic titles insignificant_words.
 <=>
 (y is_in titles
 orelse
 (exists x: string list.
 x is_in titles
 andalso permuted_titles.rotation y x
 andalso not (hd y) is_in insignificant_words)))
 end

3 Deriving a solution

In the preceding section, we gave a signature with logical relations to specify the required behavior of the function kwic. The task is now to derive an SML structure that has the SML part of this signature and that satisfies all of the EML axioms given in the signature. The general approach of the EML method is to express specific implementations as structures and parametric implementations as functors. This example is specific, so we begin by giving the skeleton of a structure, using question marks to indicate the text to be filled in. This fully unspecified structure is nearly identical to the specifying signature; in most derivations we would expect an automated assistant to produce this text for us.

structure KWIC =
 struct
 structure ordered_words: Total_Order = ?
 structure ordered_titles: Sorted_Derived_Total_Order = ?
 structure permuted_titles: Rotation = ?
 structure unique_titles: Repetition_Free_List = ?

 val kwic : string list list -> string list -> string list list = ?

 axiom (all c: string ordered_words.less c "" = false)

 and (all c: string.
 all l: string list.
 (length (explode c) = 1) =>
 (ordered_words.less "" (implode (c::l)) = true))
and (all s,t: string.
 all x,y: string.
 all xs,ys: string list.
 ((explode s) = x::xs
 andalso (explode t) = y::ys)
 => ordered_words.less s t
 = (x < y) orelse (x = y)
 andalso ordered_words.less (implode xs)
 (implode ys)
 end

and (all titles: string list list.
 all insignificant_words: string list.
 let val output = kwic titles insignificant_words
 in
 ordered_titles.sorted output
 andalso unique_titles.repetition_free output
 end)

and (all titles: string list list.
 all insignificant_words: string list.
 all y: string list.
 y is_in kwic titles insignificant_words.
 <=>
 (y is_in titles
 orelse (exists x : string list.
 x is_in titles
 andalso permuted_titles.rotation y x
 andalso not (hd y) is_in insignificant_words))
 end

The first piece required is the body of a struct for ordered_words. In fact, we guess from the first few axioms that ordered_words must be:

struct type elem = string
 fun less (x:elem) y = x < y
 fun eq (x:elem) y = x = y
end

Formally, the method allows us to retire the axioms specifying ordered_words at this stage, since the previous axioms are a consequence of this choice, according to the semantics of SML.

To refine the next ? we postulate a functor that makes use of ordered_words to define ordered_titles. The functor, words_to_titles, is given the signature:
functor words_to_titles (T:Total_Order)
 : sig include Sorted_Derived_Total_Order
 sharing elem_order = T
 end
 = ?

Assuming this functor, the specification may be refined again, replacing the definition of ordered_titles with the functor application. The axioms constraining ordered_titles may now be omitted since they too have become derived rules.

Before continuing with the top level structure, we decide to refine the new functor into two parts—one that gives the lexical order and one that provides a sort function. These functors are Lex and Derived_QSort; their signatures are given:
functor Lex (T:Total_Order)
 : sig include Derived_Total_Order
 sharing T = elem.order
 end
 = ?

functor Derived_QSort (L:Derived_Total_Order)
 : sig include Sorted_Derived_Total_Order
 sharing L.elem_order = elem_order
 end
 = ?

In terms of these functors, words_to_titles may now be completely specified as:
functor words_to_titles (T:Total_Order)
 : sig
 include Sorted_Derived_Total_Order
 sharing elem_order = T
 end
 = Derived_QSort (Lex (T))

Since the EML signatures match exactly and the sharing specifications are propagated, no proof obligations are incurred.

We next refine Lex. It is sufficiently simple that it need not be decomposed further. By elaboration of the signature and sharing specification we obtain the outline below. Note that the axiomatization strongly suggests the use of T.elem list as the representation of the elem type.
functor Lex (T:Total_Order)
 : sig include Derived_Total_Order
 sharing T = elem.order
 end
= struct
 type elem = T.elem list
 structure elem_order = T

 val elem_to_list: elem -> elem_order.elem list
 and list_to_elem: elem_order.elem list -> elem
 axiom (all x:elem. x = list_to_elem (elem_to_list x))
 and (all l:elem_order.elem list. l = elem_to_list(list_to_elem l))

 val less: elem -> elem -> bool = ?
 axiom (all x: elem . less x x = false)
 and (all x,y: elem . less x y => not less y x)
 and (all x,y,z: elem . less x y and less y z => less x z)
 and (all y: elem_order.elem.
 all l: elem. less [] (y::l) = true)
 and (all x,y: elem_order.elem.
 all xs,ys: elem.
 less (x::xs) (y::ys) = elem_order.less x y
 orelse elem_order.eq x y
 andalso less xs ys)
 and (all l:elem. less l [] = false)

 val eq: elem -> elem -> bool = ?
 axiom (all x: elem. eq x x = true)
 and (all x,y:elem. eq x y = eq y x)
 and (all x,y,z:elem. eq x y and eq y z => eq x z)

 and (eq [] [] = true)
 and (all y: elem_order.elem.
 all l: elem. eq [] (y::l) = false)
 and (all x,y: elem_order.elem.
 all xs,ys: elem.
 eq (x::xs) (y::ys) = elem_order.eq x y
 andalso eq xs ys)

 axiom (all x,y: elem . less x y orelse less y x orelse eq x y)
end
The first refinement step is to select \(T.\text{elem} \) lists for our elements. This gives identity functions for the isomorphism between elements and lists. The functor body can then be immediately refined using the simple recursive functions suggested by the axioms:

```ml
functor Lex (T:Total-Order) : sig include Derived_Total_Order
  sharing T = elem_order
end
=
struct
  type elem = T.elem list
  structure elem_order = T

  fun elem_to_list x = x
  and list_to_elem x = x;

  fun less [] [] = false
    | less [] (x::xs) = true
    | less (x::xs) (y::ys) = T.less x y orelse
                         ((T.eq x y) andalso less xs ys)
    | less (_::_) [] = false

  fun eq [] [] = true
    | eq [] (x::xs) = false
    | eq (_::x) [] = false
    | eq (x::xs) (y::ys) = (T.eq x y) andalso (eq xs ys)
end
```

This refinement requires that the axioms of the previous stage be derivable. While this is not simply signature checking, it is straightforward.

With \(\text{Lex} \) fully specified we turn to \(\text{QSort} \)—suggestively named after the quick sort algorithm which we intend to implement. We choose to refine a particular structure rather than compose functors. Elaborating the signature and sharing declarations yields the skeleton of the implementation:

```ml
functor Derived_QSort (L:Derived_Total_Order) : sig include Sorted_Derived_Total_Order
  sharing L.elem_order = elem_order
end
=
  struct
    structure elem_order = ?
    type elem = ?
```
val elem_to_list: elem -> elem_order.elem list
and list_to Elem: elem_order.elem list -> elem
axiom (all x:elem. x = list_to_elem (elem_to_list x))
and (all l:elem_order.elem list. l = elem_to_list(list_to_elem l))

val less: elem -> elem -> bool = ?
axiom (all x: elem . less x x = false)
and (all x,y: elem . less x y => not less y x)
and (all x,y,z: elem . less x y and less y z => less x z)

val eq : elem -> elem -> bool = ?
and (all x: elem. eq x x = true)
and (all x,y:elem. eq x y = eq y x)
and (all x,y,z:elem. eq x y and eq y z => eq x z)
and (all x,y: elem . less x y orelse less y x orelse eq x y)

val ordered : elem list -> bool = ?
axiom (all l,u,v,w: elem list.
 all x,y:elem. l = u @ [x] @ v @ [y] @ w
 => (less x y orelse eq x y)

val permutation : elem list -> elem list -> bool = ?
axiom (permutation [] [] = true)
and (all l,u,v:elem list.
 all x:elem. permutation (x::l) (u@[x]@v) =
 permutation l (u@v))

val sort : elem list -> elem list
axiom (all l,u:elem list.
 l = sort u => (permutation l u andalso
 ordered l))

end

Since the goal is simply an extension of L, the components from L may be incorporated directly (using the open declaration) and all common axioms immediately discharged.

functor Derived_QSort (L:Derived_Total_Order)
 : sig include Sorted_Derived_Total_Order
 sharing L.elem_order = elem_order
 end
 = struct
 open L
val ordered : elem list -> bool = ?
axiom (all l,u,v,w: elem list.
 all x,y:elem. l = u @ [x] @ v @ [y] @ w
 => (less x y orelse eq x y)

val permutation : elem list -> elem list -> bool = ?
axiom (permutation [] [] = true)
and (all l,u,v:elem list.
 all x:elem. permutation (x::l) (u@x@v) = permutation l (u@v))

val sort : elem list -> elem list
axiom (all l,u:elem list.
 l = sort u => (permutation l u andalso
 ordered l)

end

The problem now is to guide the derivation from our intuition about the behavior of quick-
sort. The basic idea is to successively partition the set into separated subsets until it is decom-
posed to singletons. Then the subsets are glued together in order by list catenation. To start
on this path, we introduce a predicate, separated, and function, partition, as follows:

val separated: elem -> elem list -> elem list -> bool
axiom (all a:elem.
 all u,v:elem list.
 separated a u v <=>
 all x:elem. member x u => less x a andalso
 member x v => (less a x orelse eq a x))

val partition elem -> elem list -> (elem list * elem list)
axiom (all a:elem.
 all l:elem list.
 let val (u,v) = partition a l
 in permutation l (u@v) andalso
 separated a u v)

Since this only introduces new requirements, no verification is needed. The partition pred-
icate is easily made concrete by the code:

fun partition a [] = ([],[])
| partition a (x::l) = let val (u,v) = partition a l
 in if less x a then (x::u, v)
 else (u,x::v)
Similarly, sort can be defined:

```plaintext
fun sort [] = []
| sort [a] = [a]
| sort (a::l) = let val (u,v) = partition a l
                   in (sort u)@[a]@[sort v]
                   end;
```

This step should be automatically justified. It is easily seen to follow from the facts:

```
ordered u andalso ordered v andalso separated a u v
=> ordered u@[a]@[v
```

and

```
((u,v) = partition a l)
andalso permutation u u'
andalso permutation v v'
=> permutation (a::l) (u@[a]@[v')
```

While this completes the most interesting aspect of the definition, we are required to realize ordered, permutation and separated as well.

This completes the derivation of the Derived_QSort functor. It is important to note that there is more information about the logical development of the algorithm in its derivation than in its final presentation.

3.1 Significant rotations

We now return to the top level structure. The next task is to construct a significant rotation structure for the permuted_titles component. Since this structure deals with words, we refine the top level structure by postulating a functor, Sig_Rotations, mapping arbitrary structures to Sig_Rotation structures, and apply that to the ordered_words structure. Thus we add

```
permuted_titles = Sig_Rotations (ordered_words)
```

to our top level structure and declare the new functor:

```plaintext
functor Sig_Rotations (S:Triv)
  : struct include Sig_Rotation
       sharing type s.elem = elem
  end
= ?
```

The definition of significant rotations makes a special case of the trivial rotation. This complicates matters because it does not allow for a regular decomposition of the significant rotation
problem into rotations and filters, as seems most natural. Attempting to solve the problem directly is possible, but the result is not elegant. However, since duplicates are ultimately removed we can introduce duplicates in this module without changing the overall behavior of the program. This allows us to put in all of the trivial rotations and all of the rotations that start with a significant word.

To support the decomposition, the first step is to specify the interface between the components. In this case it is the Rotation signature.

```plaintext
signature Rotation =
  sig type elem
  val rotation : elem list -> elem list -> bool
  val all_rotations : elem list -> elem list list
  axiom all 1, r: elem list.
   rotation 1 r => exists u,v:elem list. 1 = uOv andalso r = vOu
  axiom all 1, r: elem list.
   rotation 1 r <=> r is_in all_rotations 1
  axiom all 1: elem list. length (all_rotations 1) = length 1
end
```

This permits the functor decomposition:

```plaintext
functor Rotation (S:Triv) :
  sig include Rotation
    sharing type S.elem = elem
  end
= ?

functor Sig_Rotation' (R:Rotation) :
  sig include Sig_Rotation
    sharing type R.elem = elem
  end
= ?

functor Sig_Rotation (S:Triv) :
  sig include Sig_Rotation
    sharing type S.elem = elem
  end
= Sig_Rotation' (Rotation (S))
```

We first proceed with the Rotation functor. Rotations are cyclic permutations generated by the unit rotation. We begin coding the function by writing down the axioms from the signature and augmenting them with information about unit rotations. In an automated system this would probably be a two step process, the first done by the system and the second by the user.
functor Rotation (S:triv)
 : sig include Rotation
 sharing type S.elem = elem
 end
= struct
 type elem = S.elem
 val rotation : elem list -> elem list -> bool = ?
 val unit_rotation : elem list -> elem list = ?
 val all_rotations : elem list -> elem list list = ?

 axiom all 1, r: elem list.
 rotation 1 r => exists u,v:elem list . 1 = u@v andalso r = v@u
 axiom all 1, r: elem list.
 rotation 1 r <= > r is_in all_rotations 1
 axiom all a:elem, 1:elem list.
 unit_rotation (a::l) = 1@[a]
 axiom unit_rotation [] = []
 axiom all 1: elem list. length (all_rotations 1) = length 1
end

The rotation predicate and unit_rotation function are easily converted from axioms to code, yielding:

val rotation 1 r = r is_in (all_rotations 1)

fun unit_rotation [] = []
 | unit_rotation (a::l) = 1 @ [a]

Given our knowledge that rotations are generated by iterating the unit rotation, a first cut at all_rotations would be:

fun all_rotations 1 = 1 :: (all_rotations (unit_rotation 1))

The only problem with this is that it diverges! Since we know there are only n distinct rotations of a sequence of length n, we can introduce the local function n_rotations to finitely iterate the unit_rotation.

val n_rotations : elem list -> int -> elem list list = ?
axiom all 1 : elem list. n_rotations 1 0 = []
axiom all 1 : elem list, n: int.
 n_rotations 1 (n+1) = 1::(n_rotations (unit_rotation 1) n)

This specification is sufficiently specific that it should automatically be convertable to code. We then observe that all_rotations can be defined:
fun all_rotations l = n_rotations l (length l)

The justification of this step may be non-trivial. Collecting all of these refinements together we discover that we have fully specified the rotation functor.

functor Rotation (S:Triv)
 : sig include Rotation
 sharing type S.elem = elem
 end
 = struct
type elem = S.elem

 fun unit_rotation [] = []
 | unit_rotation (a::l) = 1 @ [a]

 fun n_rotations l =
 fn n =>
 if n = 0
 then []
 else l::(n_rotations (unit_rotation l) (n - 1))

 fun all_rotations l = n_rotations l (length l)

 fun rotation l r = r is_in (all_rotations l)
end

We now proceed to refine the Sig_Rotation' functor. Elaborating the body with the skeleton of the specification yields:

functor Sig_Rotation' (R:Rotation)
 : sig include Sig_Rotation
 sharing type R.elem = elem
 end
 = struct
type elem = R.elem

 val significant_rotations : (elem -> bool) -> elem list -> elem list list = ?

 val rotation : elem list -> elem list -> bool = ?
 val significant : (elem -> bool) -> elem list -> elem list -> bool = ?

 axiom (all 1, u, v: elem list.
 1 = u@v => rotation 1 (v@u))

 and (all 1, r: elem list.
rotation l r => exists u, v: elem list.
 u @ v = l andalso v @ u = r)

and (all sig_pred: elem -> bool.
 all l, r: elem list.
 significant sig_pred l r
 <=> l = r orelse
 (rotation l r andalso sig_pred (hd r)))

and (all sig_pred: elem -> bool.
 all l, r: elem list.
 significant sig_pred l r
 <=> r is_in significant_rotation sig_pred l)

end;

We can immediately discharge the rotation predicate by using R.rotation. It is then trivial to implement the significance predicate:

fun significant sig_pred l r
 = l = r orelse (rotation l r andalso sig_pred (hd r))

Now, to get significant rotations (with possible duplicates) we want to write:

fun significant_rotations sig_pred l
 = l :: (filter (sig_pred o hd) (R.all_rotations l))

Unfortunately filter is a higher-order function, and there is no way in the simple logic that we have attempted to use to discover the correctness of this refinement step. Research into logics for EML that support higher-order reasoning is being carried out in several places, including OGI, Bremen, and Edinburgh. We will continue with the development as if this step were justifiable.

Collecting these refinements we get:

functor Sig_Rotation’ (R:Rotation)
 : sig include Sig_Rotation
 sharing type R.elem = elem
 end
 = struct
 type elem = R.elem

 val rotation = R.rotation

 fun significant sig_pred l r
 = l = r orelse (rotation l r andalso sig_pred (hd r))
fun significant_rotations sig_pred 1
 = 1 :: (filter (sig_pred o hd) (R.all_rotations 1))
end

3.2 Sets

To implement the kwic function at top level, we anticipate taking the list of insignificant words and building a function that characterizes membership in that set. To support this, we have introduced the set abstraction earlier. At this point we extend the top level KWIC_specification structure with the declaration below, and derive the Set functor:

structure word_set = Set(ordered_words)

The set abstraction may be provided for any structure with an equivalence predicate. We express this by the following EML functor:

functor Set(Rel:Equiv-Rel)
 : sig include Set
 sharing type elem = Rel.elem
 end
 = struct
 type elem = Rel.elem
 type set = elem list
 val empty : set = ?
 val is_member : elem -> set -> bool = ?
 val insert : elem -> set -> set = ?
 val list_members : set -> elem list = ?
 axiom (all x: elem. is_member x empty = false)
 and (all x,y: elem.
 all s: set. (x=y) is_member x (insert y s) = true)
 and (all x,y: elem.
 all s: set. not (x=y) is_member x (insert y s) = is_member x s)
 and (all x: elem.
 all s: set. x is_in list_member s <= is_member x s)
 end
We then use the obvious implementation for sets as lists. An automated assistant would be expected to provide some level of help in translating these axioms to function definitions.

functor Set(Rel:Equiv_Rel) : Set =
 struct
 type elem = Rel.elem
 type set = elem list
 val empty = []
 fun is_member x [] = false
 | is_member x (y::ys) = Rel.eq x y orelse is_member x ys
 fun insert x s = x::s
 fun list_members s = s
 end

3.3 Repetition-free lists

We will obtain repetition-free lists by a functor application.

functor Delete_Repetitions (E: Equiv_Rel) :
 sig include Repetition_Free_list
 sharing type elem = E.elem
 end
 = ?

This will be used in the top level structure by including the declaration:

structure unique_titles = Delete_Repetitions (ordered_titles)

We refine the functor directly, simply elaborating the specification:

functor Delete_Repetitions (E: Equiv_Rel) :
 sig include Repetition_Free_list
 sharing type elem = E.elem
 end
 = struct
 open E
 val repetition_free: elem list -> bool = ?

 axiom all l:elem list.
 repetition_free l <=>
 (all u,v: elem list,
 all x,y: elem.
 l = u@[x,y]@v => not eq x y)

 val remove_repetitions: elem list -> elem list = ?

24
axiom all l: elem list.
 repetition_free (remove_repetitions l)

axiom all l:elem list, x:elem.
 x is_in l <=> x is_in remove_repetitions l

axiom all u,v,w: elem list, x,y:elem.
 not eq x y =>
 exists u',v',w': elem list.
 u'@x@v@y@w' =
 remove_repetitions (u@x@v@y@w)

end

The repetition_free predicate is easily implemented:

fun repetition_free [] = true
| repetition_free [_] = true
| repetition_free (a::(l as (b::_))) =
 (not (eq a b)) andalso repetition_free l

To develop the remove_repetitions function we augment this with a function that takes
an element and a list and returns a list that deletes all initial occurrences of the element.

val strip_prefix : elem -> elem list -> elem list

axiom all x:elem, u,v : elem list.
 strip_prefix x (u@v) = v
 <=>
 (all y:elem. y is_in u => eq y x)
 andalso all z:elem, w:elem list.
 v = z::w => not eq z x

We also augment the specification with a function that can handle intermediate results.

val remove_repetitions_2 : elem_list * elem_list -> elem_list

axiom all l:elem list. remove_repetitions_2 (l,[]) = l
axiom all l,u: elem list. all x:elem.
 remove_repetitions_2 (l,x::u) =
 remove_repetitions_2 (l@x,strip_prefix x u)

Assuming this function, remove_repetitions is trivially implemented. The final functor
body is:
functor Delete_Repetitions (E: Equiv_Rel)
 : sig include Repetition_Free_List
 sharing type elem = E.elem
 end
 = struct
 open E

 fun repetition_free [] = true
 | repetition_free [_] = true
 | repetition_free (a::(l as (b::_))) =
 (not (eq a b)) andalso repetition_free 1

 fun strip_prefix x [] = []
 | strip_prefix x (l as (y::u)) =
 if not (eq x y) then l else strip_prefix x u

 fun remove_repetitions_2 (l,[]) = l
 | remove_repetitions_2 (l,x::u) =
 remove_repetitions_2 (l@x,strip_prefix x u)

 fun remove_repetitions l = remove_repetitions_2 ([],l)
 end

3.4 A solution

It is now time to assemble all of our top level refinements and examine the specification. At this point we have supplied all of the specified structures and one additional supporting structure. The current refinement is:

structure KWIC =
 struct
 structure ordered_words: Total_Order =
 struct type elem = string
 fun less (x:elem) y = x < y
 fun eq (x:elem) y = x = y
 end

 structure ordered_titles: Sorted_Derived_Total_Order =
 words_to_titles (ordered_words)

 structure permuted_titles: Sig_Rotation =
 Sig_Rotation (ordered_words)
structure unique_titles: Repetition_Free_List =
 Delete_Repetitions (struct type elem = string list
 fun eq (x:string list) y = x = y
 end)

structure word_set: Set =
 Set (ordered_words)

val kwic : string list list -> string list -> string list list = ?

and (all titles: string list list.
 all insignificant_words: string list.
 let val output = kwic titles insignificant_words
 in
 ordered_titles.sorted output
 andalso unique_titles.repetition_free output
 end)

and (all titles: string list list.
 all insignificant_words: string list.
 all y: string list.
 y is_in kwic titles insignificant_words.
 <=>
 (y is_in titles
 orelse (exists x : string list.
 x is_in titles
 andalso permuted_titles.rotation y x
 andalso not (hd y) is_in insignificant_words)))
end

At this point all that remains is to supply the top level function kwic. Intuitively, this will
have four parts: construct the significance predicate, collect the rotations, sort the entries, and
remove duplicates from the list. As we already have the machinery to build the last two, we
will specify the first two:

val make_sig_pred: string list -> string -> bool = ?
axiom all l: string list, x:string.
 make_sig_pred l x
 <=> not x is_in l

Note that this function really is intended to be used as a higher-order function. If the develop-
ment were being carried out in pure first-order EML, this would not be allowed. Instead sets
could be passed around everywhere where the significance predicates are used in this derivation.
That would satisfy the first-order constraints of this version of the logic.

The collection of entries is specified:
val collect_entries :
 (string -> bool) -> (string list list) -> (string list list)
= ?

axiom (all titles: string list list.
 all sig_word_predicate: string -> bool.
 all y: string list.
 y is_in collect_entries sig_word_predicate titles
 <=> (y is_in titles
 orelse (exists x : string list.
 x is_in titles
 andalso permuted_titles.rotation y x
 andalso sig_word_predicate (hd y))))

With these functions, kwic is easily given:

fun kwic titles insig_words =
 let sig_word_pred = make_sig_pred insig_words
 in
 unique_titles.remove_repetitions
 (ordered_titles.sort
 (collect_entries sig_word_pred titles))
 end

The proof checker will have to verify that repetition removal does not reorder the elements and
that all elements of the collected entries are present in the final function value, but these follow
easily from the component specifications.

The two remaining functions are trivially implemented by higher-order list operations fold
and concmap. They can, of course, be built without these functions as well. That development
would proceed:

fun build_set [] = word_set.empty
 | build_set (a::l) = word_set.insert a (build_set l)

fun make_sig_pred l =
 let insig_set = build_set l
 in fn x => not (word_set.is_member x insig_set)
 end

fun collect_entries sig_pred [] = []
 | collect_entries sig_pred (t::l) =
 (permuted_titles.significant_rotations sig_pred t)
 @ (collect_entries sig_pred l)

The final, derived top level structure is:
structure KWIC =
 struct
 structure ordered_words: Total_Order =
 struct type elem = string
 fun less (x:elem) y = x < y
 fun eq (x:elem) y = x = y
 end

 structure ordered_titles: Sorted_Derived_Total_Order =
 words_to_titles (ordered_words)

 structure permuted_titles: Sig_Rotation =
 Sig_Rotation (ordered_words)

 structure unique_titles: Repetition_Free_List =
 Delete_Repetitions (struct type elem = string list
 fun eq (x:string list) y = x = y
 end)

 end

fun build_set [] = word_set.empty
 | build_set (a::l) = word_set.insert a (build_set l)

fun make_sig_pred l =
 let val insig_set = build_set l
 in fn x => not (word_set.is_member x insig_set)
 end

fun collect_entries sig_pred [] = []
 | collect_entries sig_pred (t::l) =
 (permuted_titles.significant_rotations sig_pred t)
 @ (collect_entries sig_pred l)

fun kwic titles insig_words =
 let val sig_wordPred = make_sig_pred insig_words
 in
 unique_titles.remove_repetitions
 (ordered_titles.sort
 (collect_entries sig_word_pred titles))
 end
end
Testing with the SML of New Jersey compiler yields the encouraging results:

- KWIC.kwic [["Tora","Tora","Tora"],
 ["It"],
 ["Crime","and","Punishment"]]
 ["it","and"];
val it = [["Crime","and","Punishment"],
 ["It"],
 ["Punishment","Crime","and"],
 ["Tora","Tora","Tora"]]: ?.E.elem list

4 Comments

This example represents our first significant experience with EML—and we have identified some problems, both with our approach and with the language and methodology. In doing the example we have made some observations which we feel are important.

4.1 Provable vs. testable equalities

In designing signatures, we have exported the defining concepts as well as their implementations. For example, in the Sig.Rotation signature, the rotation predicate was defined. Since there is no way to distinguish defining characteristics from executable Boolean predicates, this requires such predicates to be implementable. This dictates that rotations be over structures with equality.

Since provable, but untestable, defining characteristics are common in computer science, we think EML should support such a concept. In one draft we called these " metavals" declarations.

This observation also points out an anomaly in SML. There are two ways to get a structure with equality: an explicit structure, as used in our example, or an implicit structure exploiting eqtypes. It seems that there is no advantage to using the eqtype constructor. Anything it can express can be expressed more accurately with the module facility.

We have also found, unsurprisingly, that the first-order logic used to illustrate EML does not support the higher-order programming style to which we are accustomed. It seems very unnatural to eschew higher-order, polymorphic functions while "programming" in an "extension" of ML. This is simply a deficiency in the logic. As has been noted elsewhere, the methodology and framework are largely independent of the details of the logic—alternative logics are being actively explored.

5 Conclusions

We are still debating which aspects of this derivation show strengths and which show weaknesses of the EML language and methodology. We believe, however, that EML is a major step along the path to an environment usable by programmers to formally derive real programs. However,
research is needed in (1) logics that allow us to express more of ML, (2) logics that allow us to reason elegantly about higher-order fragments, (3) frameworks in which such logics can be used together (if they differ) and (4) implementations that support the derivation process and the examination of derivations.

We are also investigating the application of term rewriting techniques to improve the code we have derived with this methodology. Our current vision is to support code improvement by transformation as a major component of an environment for producing correct code with satisfactory performance. We have notes on applying transformations to this example, and expect to generate a technical report on this topic soon.

References

