January 1988

Document Type


Degree Name



Dept. of Materials Science and Engineering


Oregon Graduate Center


Polytitanates in the BaO- TiO2 system with Ba:Ti ratios ranging from 1:2 to 1:5 were prepared using a low temperature technique developed by Pechini. The samples were heated at 600 to 1300°C in oxygen. Room temperature Raman spectroscopy was used to investigate the phase relations in this system. Results of this study indicate the following: except for BaTi4O9, the powders of these compounds were amorphous when heated at 600°C for 4hrs; the compound BaTi2O5 is a low temperature stable phase; Ba6Ti17O40 forms only at temperatures above 1100°C; Ba4Ti13O30 does not form below 1000°C; the single phase BaTi4O9 structure was observed at 1200°C'; the Ba2Ti9O20 phase is obtained only after long heat treatment at 1200°; BaTi5O11 was stable up to 1200°C, at which it decomposes into Ba2Ti4O20 and TiO2. After determination of stability relationships in this system, the electrical conductivities of these compounds were examined as a function of temperature and oxygen partial pressure. For all the temperatures (850-1150°C) studied, the conductivities of these compounds increased with decreasing oxygen partial pressure resulting in n-type properties throughout the whole P[subscript O2] range (10[superscript -19 - 1atm). The P[subscript O2] dependencies of the electrical conductivity were found to be linear for an extensive range of oxygen partial pressures. On the basis of structural considerations the conductivity data was described by a majority defect model consisting of both singly and doubly ionized oxygen vacancies. For lower oxygen partial pressure values a drastic change in the electrical conductivity was observed. This is believed to result from increasing defect interaction for larger departures from stoichiometry. A defect model based on this interaction is proposed to account for the observed sharp change in the electrical conductivity values.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.